Concerns with CI for ICER

- If every experiment was pattern 1, probably wouldn’t have seen development of net monetary benefit and acceptability curves
- But experiments can occur in which CI for ICER have “odd properties” that most people at least initially find counter-intuitive
  - CI can be undefined
    - Referred to as Pattern 3
  - On real number line, either PE > LL > UL or LL > UL > PE
    - Referred to as Pattern 2

Second Example:
Replicates in all 4 quadrants
Naïve ordering DOESN’T work
Smart ordering EXTREMELY UNLIKELY TO / DOESN’T work
Consider confidence intervals for following experiment:

\[ \Delta C = 400; \ \text{SEC} = 325; \ \Delta Q = 0.02; \ \text{SEQ} = 0.02; \ \rho = 0.25; \ \text{DOF} = 498 \]
Identify Lines Through Origin That Exclude 2.5%?

Difference in Cost

Difference in QALYs

Experiment 3

Implications for Acceptability curve?

Can Still Draw Curve
But No Value of W Permits 95% Confidence Implications for CI for ICER?

Can Still Define Some CI (eg., 84.48%), But Not 95%
Implications for CI for NMB for Particular W?

95 CI for NMB for Particular W Always Defined

Implications for NMB Graph?
Can Still Draw, But….

No Value of W Permits 95% Confidence

- 0 always falls between 95% confidence limits

Value of Information, Experiment 3
Review of Results for Experiment 3

- Acceptability curve: Acceptability curve never intersects 0.025 and 0.975 on X-axis
- Confidence interval for ICER: 95% CI for ICER cannot be defined
- Confidence frontier for NMB: CI never intersect decision threshold (0 NMB / X-axis)

Pattern 3 Findings

- Refer to findings like those in experiment 3 as pattern 3 findings
- 1 of 2 patterns that occur only when difference in effect is not significant
  - P>0.5 for cost necessary but not sufficient condition
- Know we are observing a pattern 3 finding when:
  - Acceptability curve never intersects horizontal lines drawn at either 0.025 and 0.975 on Y axis
  - Confidence interval for the ICER is undefined
  - Neither NMB confidence limit curve intersects decision threshold (0 NMB / X-axis)

Region of Acceptability Related to Pattern 3

- For this curve, pattern 3 findings > 84.48% CI
Pattern 3 Findings (2)

Not confident value of two therapies differs

\(-\infty \leftrightarrow \text{Willingness to Pay} \rightarrow \infty\)

Third Example:
Some replicates on both sides of Y-axis, but primarily in 3 quadrants
Naïve ordering doesn't work,
but smart ordering generally does

Consider a third experiment that doesn't have either pattern 1 or pattern 3 findings

\(\Delta C = 35; \ SEC = 777.06; \ \Delta Q = .04; \ \text{SEQ} = .0224; \ p = 0.70625; \ \text{DOF} = 498\)

P value for cost, 0.96
P value for QALYs, 0.07
(Neither significantly different)
Neither $\Delta C$ nor $\Delta Q$ significant, but can be 95% confident of value for $W$ between 28,200 and 245,200

For all other values of $W$ can’t be 95% confident

CI for ICER When Some Replicates Fall on Each Side of Y Axis?

Unique Features of CI for ICER

- Role of $\infty$
  - For OR and RR, widest imaginable limits equal:
    $1/\infty$ to $\infty$
  - For difference, widest imaginable limits equal:
    $-\infty$ to $\infty$
  - Do $-\infty$ and $+\infty$ bound the widest CI for an ICER?
Unique Features (2)

- What’s inside and outside the interval?
  - For differences – e.g., NMB, OR, and RR – what’s inside interval ALWAYS falls somewhere in middle of real number line
  - What’s outside interval always falls on left and right sides of real number line

2) What’s Inside and Outside Interval?

- For CI for CER, what’s inside interval CAN fall somewhere in middle of real number line
- But can also fall on left and right sides of real number line

Unique Features (3)

- Reserved numbers for each Rx
  - For differences – e.g., NMB, OR, RR, and acceptability curve – CI has separate ranges of numbers reserved for when one therapy is larger/more effective/more acceptable than alternative versus when it isn’t
    - Difference >0, larger than alternative; <0 smaller....
    - OR,RR <1, more effective than alternative; >1, less effective (or vice versa)
    - % acceptable > 0.5 greater likelihood of being good value; <0.5 greater likelihood of being poor value
3) Reserved Numbers

- Numbers reserved for each therapy
  - Not true for CI for ICER
    • When $\Delta Q > 0$, CI can include all values between $-\infty$ and $\infty$

?? Misperceptions About Value When $W = \infty$ ??

- If Rx deemed good value when WTP = $50k$, must it also be good value when WTP = $100k$? When WTP approaches $\infty$?
- When designing a study, if power is 50% for WTP = $50k$ and 80% for WTP = $100k$ must power be approaching 100% as WTP approaches $\infty$?
92.52% lower limit equals $-\infty^*$

Is 92.52% interval widest that can be defined?

(* Technically, lower and upper parametric limits equal +/-∞)

No, Wider Intervals Can be Defined! e.g., 95% CI

What’s Included and What’s Excluded?
What Values of WTP Fall Inside Interval?

-∞ to 0 (lower right quadrant)
0 to 28,200 (part of upper right quadrant that falls below / to right of upper limit)
245,200 to ∞ (part of lower left quadrant that falls below / to right of lower limit)

Interval: -∞ to 28,200 and 245,200 to ∞
28,200 to 245,200 fall outside interval

For what values of WTP can we be 95% confident of value?

If W = 50,000, which therapy is good value?

Counter-Intuitive Relationships for CI for ICER

- When more than α/2% of replicates fall on both sides of Y-axis, yet CI is defined:
  - Lower limit (e.g., 245,200) is a larger number than upper limit (e.g., 28,200)
  - ICER point estimate is either a smaller number (e.g., 875 (35/0.04)) than both limits or a larger number than both limits
  - Values of WTP included in interval range from $-\infty$ to upper limit and from lower limit to $\infty$
    - e.g., $-\infty$ to 28,200 and 245,200 to $\infty$
  - Values of WTP that are excluded from interval range from (smaller) upper limit to (larger) lower limit
  - Confident of value if WTP $\geq$ upper limit and $\leq$ lower limit
Source of Counter-Intuitive Relationships

- Taking what are 2-dimensional relationships – in which $\infty$ and $\infty$ represent the same line on the cost-effectiveness plane – and projecting them onto one-dimensional real number line
  - On which $\infty$ and $\infty$ are polar opposites

Intervals on Real Number Line

- What happens when wider intervals are defined?

What Happens When Wider Intervals are Defined?
CI for ICER More Intuitive if We Tape Ends of Real Number Line Together to Form a Circle (40% CI)

CI for ICER More Intuitive if We Tape Ends of Real Number Line Together to Form a Circle (75% CI)

CI for ICER More Intuitive if We Tape Ends of Real Number Line Together to Form a Circle (92% CI)
CI for ICER More Intuitive if We Tape Ends of Real Number Line Together to Form a Circle (95% CI)

When Lower Limit is “Larger” than Upper Limit

- One of limits indicates that one of therapies may be delivering more health at increased or decreased cost
- Other limit indicates that alternative therapy may be delivering more health at increased or decreased cost
- Q is not statistically significant at a level represented by interval
- Interval thus includes y axis

When Lower Limit is “Larger” than Upper Limit (2)

- Point estimate is either larger than both limits or is smaller than both limits, but does what we expect for one of limits
  - If point estimate and lower limit are on same side of Y axis, point estimate is larger than lower limit (which is larger than upper limit)
  - If point estimate and upper limit are on same side of Y axis, point estimate is smaller than upper limit (which is smaller than lower limit)
Confidences Statements for CI for NMB

- If both confidence limits negative, 95% confident therapy is bad value
  - In this experiment, does not occur
- If both confidence limits positive, 95% confident therapy is good value
  - i.e., for values of WTP ≥ 28,200 and ≤ 245,200
- If one confidence limit positive and one negative, cannot be 95% confident value of 2 therapies differs
  - i.e., for values of WTP < 28,200 and > 245,200

CI for ICER, CI for NMB, Acc Curve All Use Same Lines
CI for ICER, CI for NMB, Acc Curve All Use Same Lines

Confidence interval for ICER
ICER CI: (-∞ to 28,200 and 245,200)

Confidence frontier for NMB
Lower limit intersects decision threshold (0 NMB / X-axis) at 28,200 and 245,200

Value of Information, Experiment 2

Acceptability curve
Acceptability curve intersects line at 0.975 at 28,200 and 245,200

Review of Results for Experiment 2
Pattern 2 Findings

- Refer to findings like these as pattern 2 findings
- 1 of 2 patterns that occur only when difference in effect is not significant
- Know we are observing a pattern 2 finding when:
  - Confidence interval for ICER includes Y axis (i.e., LL > UL > PE OR PE > LL > UL)
  - One NMB confidence limit curve intersects decision threshold (0) twice; other limit never intersects decision threshold
  - Acceptability curve intersects a horizontal line drawn at either 0.025 and 0.975 on Y axis twice and never intersects other line

Region of Acceptability Related to Pattern 2

3 Ranges of WTP for Pattern 2 Findings

- In cases where some of boundaries between regions occur at negative values of willingness to pay, may not always observe all 3 regions on acceptability curve or NMB plot
Conclusions (1)
• For any given W, an experiment **ALWAYS** supports one of three conclusions:
  – Confident one therapy good value compared to alternative
  – Confident alternative therapy good value compared to first
  – Cannot be confident that two therapies differ in economic value

Conclusions (2)
• If goal is to identify which of 3 statements holds for a given W, confidence intervals for cost-effectiveness ratios, confidence intervals for NMB, and acceptability curves **ALWAYS** provide same answer
  – e.g., if W included within CI for CER, then:
    • CI for NMB that is calculated by use of W will include 0, and
    • Fraction of distribution that is acceptable at W will fall between horizontal lines that define decision threshold (e.g., between 0.025 and 0.975)

Conclusions (3)
• Confidence intervals for cost-effectiveness ratios provide concise information (i.e., 0, 1, or 2 numbers) that allows determination – based on a particular W – of confidence about a therapy’s value
• Acceptability curves provide added advantage of allowing decision makers to assess alternate levels of confidence if such alternate levels are of interest