Designing Economic Evaluations in Clinical Trials

Henry Glick
Institutt for helseledelse og helseøkonomi
November 24, 2008

Good Value for the Cost

- Economic data collected as primary or secondary endpoints in randomized trials are commonly used in the evaluation of the value for the cost of medical therapies
 - Short-term economic impacts directly observed; longer term impacts potentially projected by use of decision analysis
 - Reported results: point estimates and confidence intervals for estimates of incremental costs, outcomes, and the comparison of costs and effects
 - Impact of sensitivity analysis on the comparison of costs and effects judged by its impact on both the point estimates and the confidence intervals of the ratios

Example

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Point Estimate</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incremental Costs</td>
<td>-713</td>
<td>-2123 to 783</td>
</tr>
<tr>
<td>Incremental QALYs</td>
<td>0.13</td>
<td>0.07 to 0.18</td>
</tr>
<tr>
<td>Cost-Effectiveness Ratios</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Principal Analysis</td>
<td>Dominates</td>
<td>Dom to 6650</td>
</tr>
<tr>
<td>Survival benefit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-33%</td>
<td>Dominates</td>
<td>Dom to 9050</td>
</tr>
<tr>
<td>+33%</td>
<td>Dominates</td>
<td>Dom to 5600</td>
</tr>
<tr>
<td>Hospitalization costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-50%</td>
<td>Dominates</td>
<td>Dom to 8400</td>
</tr>
<tr>
<td>+50%</td>
<td>Dominates</td>
<td>Dom to 9400</td>
</tr>
<tr>
<td>Drug costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-50%</td>
<td>Dominates</td>
<td>Dom to 4850</td>
</tr>
<tr>
<td>+50%</td>
<td>Dominates</td>
<td>Dom to 8750</td>
</tr>
<tr>
<td>Discount rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0%</td>
<td>Dominates</td>
<td>Dom to 6350</td>
</tr>
<tr>
<td>7%</td>
<td>Dominates</td>
<td>Dom to 7000</td>
</tr>
</tbody>
</table>
Outline

- Steps in economic evaluation
- The gold standard and its tensions
- 4 Strategic issues
 – What medical service use should one collect?
 – At What Level Should Medical Service Use Be Aggregated?
 – How naturalistic should the study design be?
 – Is there a treatment-by-time interaction?
- Valuing medical service use and sample size discussed in separate lectures

Steps in Economic Evaluation

Step 1: Quantify the costs of care
Step 2: Quantify outcomes
Step 3: Assess whether and by how much average costs and outcomes differ among the treatment groups
Step 4: Compare magnitude of difference in costs and outcomes and evaluate “value for costs” (e.g. by reporting a cost effectiveness ratio or the probability that the ratio is acceptable
 – A hypothesis that might be tested in such a study is that the ratio of the cost per quality-adjusted life year saved is significantly less than $60,000
Step 5: Perform sensitivity analysis

Ideal Economic Evaluation Within a Trial

- An ideal economic evaluation within a trial is:
 – Conducted in naturalistic settings; compares the therapy with other commonly used therapies; and studies the therapy as it would be used in usual care
 – Performed with adequate power to assess the homogeneity of results in the wide range of clinical settings and among the wide range of clinical indications in which the therapy will be used
 – Designed with an adequate length of follow-up to assess the full impact of the therapy
 – Conducted within a time frame that allows the resulting information to inform important decisions in the adoption and dissemination of the therapy
Ideal Economic Evaluation Within a Trial (II)

• Measure all costs of all participants prior to randomization and for the duration of follow-up
 – Costs after randomization—cost outcome
 – Costs prior to randomization—potential predictor
• Independent of the reasons for the costs
• Most feasible when:
 – Easy to identify when services are provided
 – Service/cost data already being collected
 – Ready access to data

Design Issues Not Unique To Trials

• A number of design issues apply equally to economic evaluations that are incorporated within clinical trials and to other economic evaluations:
 – The type of analysis that will be conducted (e.g. cost-benefit, cost-effectiveness, or cost minimization analysis)
 – The types of costs that will be included (e.g. direct medical, direct nonmedical, productivity, and intangible)
 – The perspective from which the study will be conducted
• These issues have been well addressed in the literature

Difficulties Achieving an Ideal Evaluation

• Potential difficulties in meeting these goals within trials
 – Settings often controlled; comparator isn’t always the most commonly used therapy; investigators haven’t always learned fully how to use the new therapy under study
 – In some cases, sample size required to answer economic questions is greater than sample size required for clinical questions
 – In some cases, ideal length of follow-up required to answer economic questions is longer than follow-up necessary to answer clinical questions
Trade-off

• These trials may be the only source of information needed for important early decisions about the adoption and diffusion of the therapy

• TRADE-OFF: Ideal vs best feasible

Issue #1: What Medical Service Use Should One Collect?

• Real/perceived problems

 1. Don’t have sufficient resources to track all medical service use

 2. (In some cases), Don’t expect to affect all medical service use, just that related to the disease in question

 – Implication: given sample size in trial, collection of all medical services, independent of the reason for these services, may swamp the “signal” with “noise”

 ⇒ Why not limit data to disease-related services?

Limited Data Collection Resources

• Access to billing data may obviate resource limitation associated with tracking all medical service use

• If administrative data are unavailable:

 – Measure services that make up a large portion of the difference in treatment between patients randomized to the different therapies under study

 • Provides an estimate of the cost impact of the therapy

 – Measure services that make up a large portion of the total bill

 • Minimizing unmeasured services reduces the likelihood that differences among them will lead to biased estimates

 • Provides a measure of overall variability
Measure as Much as Possible

- The best approach is to measure as many services as possible
 - There are no a priori guidelines about how much data are enough, nor are there data on the incremental value of specific items in the economic case report form

Document Likely Service Use During Trial Design

- Decisions improved if one documents the types of services used by patients who are similar to ones who will be enrolled in the trial
 - Review medical charts or administrative data sets
 - Survey patients and experts about the kinds of care received
 - Have patients keep logs of their health care resource use
- Must guard against possibility that new therapy will induce medical service use that differs from current medical service use

Account for Data Collection Expense

- Decisions about the services to measure should take into account the expense of collecting particular data items
 - e.g., frequently performed, low cost items?
 - 6,700 blood gas tests equaled 1.8% of procedure and diagnostic test costs
 - 420 angiocardio pneumographies equaled 4.3%
Limit Data to Disease-Related Services?

- Little if any evidence exists about the accuracy, reliability, or validity of such judgments
- Easy for judgments to be flawed

Limit Data to Disease-Related Services (II)

- Investigators routinely attributes AEs to the intervention, even when participants received vehicle/placebo
- Much of medical practice is multifactorial: modifying disease in one body system may affect disease in another body system
 - In the Studies of Left Ventricular Dysfunction, hospitalizations "for heart failure" were reduced by 30% (combined endpoint, death and HF hospitalization, p<0.0001); simultaneously, hospitalizations for noncardiovascular reasons were reduced 14% (p = 0.006)
- If a patient has an automobile accident, how does the clinician determine whether or not it was due to a hypotensive event caused by therapy?

Limit Data to Disease-Related Services (III)

- Potential biases more of a problem in unblinded studies, but need not "balance out" in double-blinded studies
Other Types of Costs?

- Other types of costs that sometimes are documented within economic evaluations include:
 - Time costs: Lost due to illness or to treatment
 - Intangible costs
- Types of costs that should be included in an analysis depend on what is affected by illness and its treatment and what is of interest to decision makers
 - e.g., the National Institute for Clinical Excellence (U.K.) and the Australian Pharmaceutical Benefits Scheme has indicated they are not interested in time costs

General Recommendations

- General Strategy: Identify a set of medical services one will collect, and assess them any time they are used, independent of the reason for their use
- If data collection is limited to a single page in the CRF:
 - First impression: Collect big-ticket items, (e.g., hospitalization, long term care, etc); don't sweat smaller ticket items
 - Heart failure: hospitalization costs, number of outpatient visits
 - Hospitalized infections: ICU, stepdown, and routine care days; major procedures
 - Asthma: ER visits, Hospitalizations, comedications

Better Approach

- Prior to the study, invest in determining which services will likely make up a large portion of the difference in costs between the treatment groups
 - If the therapy is likely to affect the number of hospitalizations:
 - Collect information that will provide a reliable estimate of the cost of these hospitalizations
 - If the therapy is likely to affect days in the hospital and location in the hospital, collect this information
 - If the therapy is principally likely to affect outpatient care, collect measures of outpatient care, etc.
Specific Recommendations, Which Services?

- Identify common patterns of medical service use in countries that will participate in the trials
 - Speak with experts in multiple countries
 - Focus groups, etc.
- Design case report forms to collect important, common medical service use
- Collect the services independent of the reason for their use
- Have the forms piloted tested in multiple countries to make sure the types of services and terms used to describe them make sense in the country
- Consider collecting costs other than medical service use

Specific Recommendations, Which Services (II)

- In some trials, length of stay in the hospital is documented in the SAE form
- If it is not too much additional burden, have those filling out the SAE forms use an ADDITIONAL form to record days in the hospital by unit type (e.g., routine care and ICU)
- In some trials, a single hospitalization can be listed on multiple SAE forms
 - During data preparation, compare hospitalization dates to ensure no double counting
- If patients are also asked about LOS, regard data in the SAE form, and the additional form if used, as the gold standard

Issue #2: At What Level Should Medical Service Use Be Aggregated?

- If we count medical service use and multiply it times a set of price weight estimates, at what level of aggregation should the services be recorded?
 - For example for inpatient care, should we count:
 - Hospitalizations?
 - Days in the hospital?
 - Days in the hospital stratified by location in the hospital?
 - Days in the hospital stratified by location plus individual services provided in the hospital?
Factors Affecting Level of Aggregation

- Do we expect the intervention to affect:
 - The number of hospitalizations that occur
 - The length of stay of a hospitalization when it occurs
 - The intensity of medical services utilized during the stay
- In making decisions about the level of aggregation, we should consider the likely difference more or less aggregated information will have on the study result as well as the cost of collecting more or less aggregated data
- Resulting decisions affect the price weight estimates required for the calculation of cost

Hospital Care Decisions

- For hospital care, the types of services that are counted often depend on the setting in which the therapies under investigation are expected to be used
 - For therapies used predominantly in hospital settings, a common approach is to sum the individual costs of a hospital stay, such as those associated with days in the hospital, stratified by intensity of care, laboratory evaluations, procedures, and medications
 - For therapies used predominantly in outpatient settings, it is more common to collect information about hospital diagnoses and length of stay

Hospital Care Valuation

- Hospitalizations can be valued by use of aggregate measures of hospital cost, such as diagnosis-related group (DRG) payments or an estimate of the cost per day times the number of days in the hospital
 - When this latter strategy is adopted, at one extreme we might use a single cost estimate from a single center to value all hospitalizations at all centers
 - At the other extreme, we might use diagnosis-specific price weight estimates from each center that participated in the study
- Most studies adopt a strategy that falls somewhere between these extremes
Outpatient Care Decisions

- At the most aggregate level, outpatient care can be recorded as the number of visits
- Alternatively, diagnostic tests, procedures, and treatments can be recorded as well
- For example, based on data from the U.S. Medical Expenditure Panel Survey*, direct payments for ER visits are:
 - Average expenditure: $560
 - Average if no special services provided: $302
 - Average if 1+ nonsurgical services provided: $637
 - Average if surgical procedure provided: $904

* Medical Expenditure Panel Survey Statistical Briefs. #111: Expenses for a Hospital Emergency Room Visit, 2003

Sources of Price Weights

- Sources of proxies for price weights differ by country
 - US has a number of publicly-available sources of cost data
 - Available data in Europe and some other parts of the world available data often include fee schedules, data from DRG studies, and data from hospital costing systems
- We discuss price weights in more detail in the next session

Issue #3. How Naturalistic Should The Study Design Be?

- The primary purpose of cost-effectiveness analysis is to inform real-world decision-makers about how to respond to real-world health care needs
- Thus, the more naturalistic the trial, in terms of participants, analysis based on the intention to treat, and limitation of loss to follow-up, the more likely the data developed within the trial will speak directly to the decision question
Naturalism: Intention-To-Treat Analysis

- Economic questions relate to treatment decisions (e.g., whether to prescribe a therapy), not whether the patient received the drug prescribed nor whether, once they started the prescribed drug, they were switched to other drugs
 - Implication: costs and effects associated with these later decisions should be attributed to the initial treatment decision
- Thus, trial-based cost-effectiveness analyses should adopt an intention-to-treat design

Naturalism: Loss to Follow-up

- Trials should be designed in such a way that they minimize the occurrence of missing data
 - For example, study designs should include plans to aggressively pursue subjects and data throughout the trial
 - One recent long-term study of treatment for bipolar disorder was designed from the outset to respond to missed interviews by:
 1) intensive outreach to reschedule the assessment, followed by
 2) telephone assessment, followed by
 3) interview of a proxy who had been identified and consented at the time of randomization

- Investigators should also ensure that:
 - Follow-up continues until the end of the study period
 - Data collection should not be discontinued simply because a subject reaches a clinical or treatment stage such as failure to respond (as, for example, happens in some antibiotic, cancer chemotherapy, and psychiatric drug trials)
 - Given that failure often is associated with a change in the pattern of costs, discontinuation of these patients from the economic study is likely to bias the results of an economic evaluation that is conducted as part of the trial
Naturalism: Protocol-Induced Costs and Effects

- Clinical trial protocols often try to standardize the care of patients in the trial
 - They may require substantial number of investigations and diagnostic tests that would not be performed under normal clinical practice
- Trials also tend to prescribe aggressive documentation and treatment of potential adverse effects observed in the trial

Naturalism: Protocol-Induced Costs and Effects (2)

- These requirements for diagnostic testing may bias the evaluation:
 - Use and cost of tests may be biased towards the null hypothesis of no difference
 - Diagnosis and treatment cost may be increased because of detection in the trial of outcomes that in usual care would not have been detected
 - e.g., in trials of prophylaxis for DVTs in elective hip replacement surgery, repeated testing for DVTs may identify a number of cases that never would have been detected or treated in usual practice

Naturalism: Protocol-Induced Costs and Effects (III)

- Adjustment for this extra detection -- potentially by use of decision analytic models -- may be difficult, because information usually is not available from the trial about whether active therapy avoided complications that would have been detected and treated in routine practice or whether it avoided those that never would have been detected
Specific Recommendations, Naturalism

- Use the intention to treat sample for the economic analysis
- Be aggressive in maintaining follow-up, including continuing to collect data on those who fail or switch therapy
- Use appropriate analytic to address missing data if and when they occur
- To the extent possible in a registration trial, minimize the effect of the protocol on patient care

Issue #4. What Is The Likelihood That The Cost-effectiveness Ratio Observed In The Trial Describes Longer Term Therapy?

- When the trial observes cost-effectiveness for a time-limited period (e.g., 2 or 3 years), but the therapy will be taken for lifetime, one should consider the likelihood that the cost-effectiveness ratio observed in the trial will describe longer term therapy
 - Referred to as a time by treatment interaction

Likelihood of a Time By Treatment Interaction

- Time by treatment interaction less likely to be substantial when the intervention’s cost and outcome begin at approximately the same time and continue to be incurred together over time (e.g., drug therapy for heart failure)
- Interaction more likely to be substantial when:
 - Treatment cost and outcome incurred over time, but outcome delayed for a number of years (e.g., risk reduction from cholesterol-modifying therapy) OR increasing with time
 - Treatment cost incurred initially (e.g., surgical removal of tumor) and outcome (e.g., survival) accrued over time
Addressing a Time By Treatment Interaction

• Evaluate what was observed during the trial (within-trial analysis)
• Develop decision analytic models to make projections beyond the period of observation (projection)

Strengths and Weaknesses

• Within-trial analysis and longer term projections have opposing strengths/weaknesses:
 – We are more certain of what was observed during the trial, but follow-up may be too short to capture the most important impacts of the therapy
 – We are less certain about the projection beyond the trial, but this projection attempts to quantify what may be the most important impacts of the therapy

Within-Trial Analysis

• Even if one decides that the primary analysis will be a projection beyond the period of observation, one should still evaluate the costs and outcomes that were observed during the trial
• In such a within-trial evaluation, one should maintain the same time horizons for costs and outcomes observed in the trial (e.g., if follow-up for the trial was for one year, then costs and effects should be measured for one year)
• Not always easy to demonstrate cost-effectiveness in a within-trial analysis
 • e.g., no within-trial analysis of cholesterol-modifying therapy has demonstrated reasonable cost-effectiveness
Longer-Term Projection

- To investigate whether the cost-effectiveness ratio is homogeneous with respect to time, one should also project the results for longer periods.
- For projection: Maintain a common time horizon for both costs and effects.
 - Some studies have used the cost difference observed within the trial; argued that the benefits of the therapy extend beyond the trial; and incorporated the benefits but not costs from beyond the trial.
 - E.g., West of Scotland Coronary Prevention Study.
 - If the therapy has downstream benefits that have not been adequately captured during the trial, it most likely has downstream costs that also have not been adequately captured.

Time Horizon for Projection

- Given that the longer the projection, the less certain the results, one should make projections for different time horizons.
 - Even if the longest time horizon in a lifetime projection is 30-40 years, one may observe that projected long-term cost-effectiveness reaches equilibrium after only 5 or 10 years of projection.
- To add face validity to the trajectory of the projected cost-effectiveness ratios:
 - If there is sufficient follow-up during the trial, make estimates for differing lengths of follow-up during the trial (e.g., the first year, the first 2 years, etc.).

CER And CI Within the Trial and Projected

<table>
<thead>
<tr>
<th>Years of Follow-up</th>
<th>Point Estimate</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Within the trial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Dominated</td>
<td>168,884 to Dominated</td>
</tr>
<tr>
<td>2</td>
<td>282,857</td>
<td>45,577 to Dominated</td>
</tr>
<tr>
<td>3</td>
<td>73,529</td>
<td>Dominates to Dominated</td>
</tr>
<tr>
<td>4</td>
<td>12,074</td>
<td>Dominates to Dominated</td>
</tr>
<tr>
<td>5</td>
<td>15,258</td>
<td>Dominates to 122,772</td>
</tr>
<tr>
<td>Longer term projection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>12,246</td>
<td>Dominates to 42,263</td>
</tr>
<tr>
<td>15</td>
<td>8,578</td>
<td>Dominates to 26,721</td>
</tr>
<tr>
<td>20</td>
<td>7,320</td>
<td>681 to 21,841</td>
</tr>
</tbody>
</table>
Specific Recommendations, Treatment by Time Interaction

- Evaluate whether a strong treatment by time interaction is expected
- If yes, consider development of a decision model to assess the potential magnitude of the interaction
 - Substantial amounts of the data used for the decision model should be derived from the trial
 - Where necessary, augment data from the trial with epidemiologic data on long term outcomes, etc.

Summary

- Clinical trials may provide the best opportunity for developing information about a medical therapy’s value for the cost early in its product life
- When appropriate types of data are collected and when they are analyzed appropriately, these evaluations can provide data about uncertainties related to the assessment of the value for the cost of new therapies that may be used by policy makers, drug manufacturers, health care providers and patients when the therapy is first introduced in the market

Further reading: