Outcomes Research

- Evaluates outcomes of medical therapies (potentially including costs) and their impacts on people, organizations, and society
- Therapies can include drugs, devices, procedures, or broader programmatic or system interventions
- Outcomes can include mortality, morbidity, functional status, mental well-being, other aspects of health-related quality of life, cost, etc.

Pharmacoconomics
Pharmacoeconomics

- Outcomes research specifically focused on economic outcomes of pharmaceuticals
- Multidisciplinary methods
 - Medicine
 - Pharmacy
 - Economics
 - Decision sciences
 - Operations research
 - Statistics / biostatistics
 - Other social sciences

Pharmacoeconomic Messages

- Therapy is good/bad value
- Budget impact
- Burden of illness
 - Often flag waving: “This disease is important…”
- Specific messages addressed depend in part on:
 - Disease and therapy under evaluation
 - Other therapies available to treat condition
 - Interest of regulatory bodies, providers, payers, and patients

Pharmacoeconomic Study Designs

- Clinical trials
 - Economic evaluation in clinical trials widespread
 - Little to no selection bias, but potential issues of generalizability
- Observational studies
 - Often more generalizable, but problems with selection bias
- Decision models
 - Often used to address pressing questions for which direct data are not available
 - Shares strengths and weaknesses of source data
 - Added uncertainties related to combining data from multiple sources and projection beyond the data
Pharmacoeconomics Methods Overview

Economic Evaluation Methods Overview
• Types of analyses
• Types of outcomes
• Perspective
• Steps in economic evaluation

Types of Analysis
• Cost identification
• Cost-effectiveness / cost-utility
• Cost-benefit
• Generally distinguished by:
 – Outcomes included: e.g., costs alone vs costs and effects
 – How outcomes are quantified: e.g., as money alone or as health and money
Cost-Identification / Cost-minimization

• Estimates difference in costs between therapies, but not difference in other outcomes
• Commonly conducted when no difference observed in effectiveness
 – “As no statistical significant difference among the mean QALYs gained with the different [hormonal therapies] was detected (p = 0.12), CUA was replaced by a cost minimization analysis.”
• Appropriate solely when two therapies of equal efficacy are compared

Death of Cost-Identification?

• Old version: If two therapies’ effects are identical, adopt cheaper of two therapies
 – Effect maximization corollary: If two therapies’ costs are identical, adopt more effective of two
• New version: Because we generally can’t conclude two therapies are identical (at most we fail to reject null hypothesis), cost-minimization analysis is unlikely to ever be appropriate
 – Substitute cost-effectiveness or cost-benefit analysis

Cost-Effectiveness Analysis

• Estimates differences in costs and differences in outcomes between interventions
 – Costs and outcomes measured in different units
• Incremental cost-effectiveness ratio
 \[
 \frac{\text{Costs}_1 - \text{Costs}_2}{\text{Effects}_1 - \text{Effects}_2}
 \]
• Results meaningful in comparison with:
 – Predetermined threshold/cut-off for willingness to pay
 • e.g., $50k-$100k / QALY or £20k-£30k / QALY
 – Other accepted and rejected interventions (league tables)
Cost-Utility Analysis

- Costs and outcomes measured in different units AND outcomes expressed in units of utility (e.g., QALYs)
- Referred to either as a fourth type of analysis or as a subset of cost-effectiveness analysis

Cost-Benefit Analysis

- Estimates differences in costs and differences in benefits in same (usually monetary) units
- As with cost-effectiveness, requires a set of alternatives
- Net benefit is preferred expression cost-benefit result
 \[- (Benefit_1 - Benefit_2) - (Cost_1 - Cost_2)\]

Types of Costs

- Direct: medical or nonmedical
- Time costs: Lost due to illness or to treatment
- Intangible costs
- Types of costs included in an analysis depend on:
 - What is affected by illness and its treatment
 - What is of interest to decision makers
 - e.g., a number of countries’ decision makers have indicated they are not interested in time costs
What Effectiveness Measure?

- Can calculate a ratio for any outcome
 - Cost per toe nail fungus day averted
- For cost-effectiveness ratios to be an informative, must know willingness to pay for outcome
 - In many jurisdictions, quality-adjusted life year (QALY) is recommended outcome of cost-effectiveness analysis
- Some resistance to this outcome, particularly from U.S. Congress
 - [PCORI] “shall not develop or employ a dollars per quality adjusted life year (or similar measure that discounts the value of a life because of an individual’s disability) as a threshold to establish what type of health care is cost effective or recommended”

Study Perspective

- Economic studies should adopt 1 or more “perspectives”
 - Societal
 - Payer (often insurer)
 - Provider
 - Patient
- Perspective helps identify services that should be included in analysis and how services should be cost out
 - e.g., patient out-of-pocket expenses may be excluded from insurer perspective
 - Not all payments may represent costs from societal perspective

Steps in Economic Evaluation

Step 1: Quantify costs of care
Step 2: Quantify outcomes
Step 3: Assess whether and by how much average costs and outcomes differ among treatment groups
Step 4: Compare magnitude of difference in costs and outcomes and evaluate “value for costs”
 - e.g. by reporting a cost-effectiveness ratio, net monetary benefit, or probability that ratio is acceptable
 - Potential hypothesis: Cost per quality-adjusted life year saved significantly less than $75,000
Step 5: Perform sensitivity analysis
What Data / When?

• Phases I and II
 – Incidence and prevalence-based burden of illness
 • Incidence-based - lifetime costs of the disease for a cohort with incident disease
 • Prevalence-based - costs of disease during a given time period for prevalent cases
 – Natural history modeling
 – Preplanning for phase III economic studies

Phase III

• Cost / Efficacy studies in clinical trials
 – Provides economic data for registration, pricing, and early use
• Decision modeling of impacts of intervention
• Budget impact studies
Phase IV

- Cost / Effectiveness studies in usual care
 - Comparisons made in more realistic settings with more realistic protocols against comparators of interest to individual decision makers
 - Allow decision makers to assess whether economic results from phase III trials are generalizable to usual care
- Decision modeling of impacts of intervention
- Post marketing surveillance studies
 - Observational data to evaluate costs, effectiveness, and adverse experiences related to the drug

Who is Listening?

- PE Recommendations/Guidelines (Partial list)
 - Australia
 - Austria
 - Brazil
 - Baltic countries
 - Belgium
 - Brazil
 - China
 - Denmark
 - Egypt
 - Finland
 - France
 - Hungary
 - Italy
 - Mexico
 - Netherlands
 - Norway
 - Poland
 - Russia
 - South Korea
 - Spain
 - Sweden
 - Taiwan
 - Thailand
 - U.K.
 - Japan
 - Korea
 - China
 - Australia
 - Brazil
 - Mexico
 - Italy
 - Netherlands
 - Norway
 - Poland
 - Russia
 - South Korea
 - Spain
 - Sweden
 - Taiwan
 - Thailand
 - U.K.
 - Japan
 - Korea
 - China
 - Australia
 - Brazil
 - Mexico
 - Italy
 - Netherlands
 - Norway
 - Poland
 - Russia
 - South Korea
 - Spain
 - Sweden
 - Taiwan
 - Thailand
 - U.K.
 - Japan
 - Korea
 - China
 - Australia
 - Brazil
 - Mexico
 - Italy
 - Netherlands
 - Norway
 - Poland
 - Russia
 - South Korea
 - Spain
 - Sweden
 - Taiwan
 - Thailand
 - U.K.
 - Japan
 - Korea
 - China
 - Australia
 - Brazil
 - Mexico
 - Italy
 - Netherlands
 - Norway
 - Poland
 - Russia
 - South Korea
 - Spain
 - Sweden
 - Taiwan
 - Thailand
 - U.K.
 - Japan
 - Korea
 - China
 - Australia
 - Brazil
 - Mexico
 - Italy
 - Netherlands
 - Norway
 - Poland
 - Russia
 - South Korea
 - Spain
 - Sweden
 - Taiwan
 - Thailand
 - U.K.
 - Japan
 - Korea
 - China
 - Australia
 - Brazil
 - Mexico
 - Italy
 - Netherlands
 - Norway
 - Poland
 - Russia
 - South Korea
 - Spain
 - Sweden
 - Taiwan
 - Thailand
 - U.K.
 - Japan
 - Korea
 - China
 - Australia
 - Brazil
 - Mexico
 - Italy
 - Netherlands
 - Norway
 - Poland
 - Russia
 - South Korea
 - Spain
 - Sweden
 - Taiwan
 - Thailand
 - U.K.
 - Japan
 - Korea
 - China
 - Australia
 - Brazil
 - Mexico
 - Italy
 - Netherlands
 - Norway
 - Poland
 - Russia
 - South Korea
 - Spain
 - Sweden
 - Taiwan
 - Thailand
 - U.K.
 - Japan
 - Korea
 - China
 - Australia
 - Brazil
 - Mexico
 - Italy
 - Netherlands
 - Norway
 - Poland
 - Russia
 - South Korea
 - Spain
 - Sweden
 - Taiwan
 - Thailand
 - U.K.
 - Japan
 - Korea
 - China
 - Australia
 - Brazil
 - Mexico
 - Italy
 - Netherlands
 - Norway
 - Poland
 - Russia
 - South Korea
 - Spain
 - Sweden
 - Taiwan
 - Thailand
 - U.K.
 - Japan
 - Korea
 - China
 - Australia
 - Brazil
 - Mexico
 - Italy
 - Netherlands
 - Norway
 - Poland
 - Russia
 - South Korea
 - Spain
 - Sweden
 - Taiwan
 - Thailand
 - U.K.
 - Japan
 - Korea
 - China
 - Australia
 - Brazil
 - Mexico
 - Italy
 - Netherlands
 - Norway
 - Poland
 - Russia
 - South Korea
 - Spain
 - Sweden
 - Taiwan
 - Thailand
 - U.K.
 - Japan
 - Korea
 - China
 - Australia
 - Brazil
 - Mexico
 - Italy
 - Netherlands
 - Norway
 - Poland
 - Russia
 - South Korea
 - Spain
 - Sweden
 - Taiwan
 - Thailand
 - U.K.
 - Japan
 - Korea
 - China
 - Australia
 - Brazil
 - Mexico
 - Italy
 - Netherlands
 - Norway
 - Poland
 - Russia
 - South Korea
 - Spain
 - Sweden
 - Taiwan
 - Thailand
 - U.K.
 - Japan
 - Korea
 - China
 - Australia
 - Brazil
 - Mexico
 - Italy
 - Netherlands
 - Norway
 - Poland
 - Russia
 - South Korea
 - Spain
 - Sweden
 - Taiwan
 - Thailand
 - U.K.
 - Japan
 - Korea
 - China
 - Australia
 - Brazil
 - Mexico
 - Italy
 - Netherlands
 - Norway
 - Poland
 - Russia
 - South Korea
 - Spain
 - Sweden
 - Taiwan
 - Thailand
 - U.K.
 - Japan
 - Korea
 - China
 - Australia
 - Brazil
 - Mexico
 - Italy
 - Netherlands
 - Norway
 - Poland
 - Russia
 - South Korea
 - Spain
 - Sweden
 - Taiwan
 - Thailand
 - U.K.
Use in US

- Common Belief: “Pharmacoeconomic data not used in US”
 - NIH expert guideline panels and Environmental Protection Agency can and do use
 - Chambers et al.: Lack of an estimate of cost-effectiveness associated with a decreased likelihood of Medicare coverage
 - Aspinall et al.: Veterans Health Administration “has emphasized use of cost-effectiveness data, especially for newer, costly drugs.”
 - Neuman and Bliss: 12% of FDA DDMAC warning letters between 2002 and 2011 cite health economic violations
 - Academy of Managed Care Pharmacy guidelines for pharmacoeconomic submissions to formularies

Alsultan: Role of Pharmacoeconomics in Saudi Arabian Formulary Decision Making *

- Decision Criteria
 - Efficacy: 98% very/extremely important
 - Safety: 98% very/extremely important
 - Acquisition cost: 86% important/very important
 - Other: 33% very/extremely important
- Ever used PE data: 75% yes
- Data usefulness: 39% very/extremely helpful
- Influence of data: 25% very/extremely influential
- Knowledge: 8% very/extremely knowledgeable

*Lafii et al.: Jordan Rational Drug List *

- No formal requirement for use of pharmacoeconomic data
- Pharmacoeconomic evidence “not influential” in formulary decisions
- Recommendations:
 - Enhance capacity for generating, accessing, and/or applying health economic analysis to priority setting decisions
 - Remove organizational and structural impediments

Sources of Pharmacoeconomic Data

- Self generation by local experts
 - ISPOR chapters
- Multinational trials
- International collaborations between local scientists and scientists in other countries
 - Sunday’s rotavirus example
 - Nice International
- Data borrowed from elsewhere
 - Transferability

Pichon-Riviere: Latin America Transferability Survey

<table>
<thead>
<tr>
<th>Transferability of</th>
<th>Researchers</th>
<th>Decision Makers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economic Evaluation</td>
<td>6.8</td>
<td>6.5</td>
</tr>
<tr>
<td>Budget Impact</td>
<td>5.9</td>
<td>5.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Barriers to Use</th>
<th>Researchers</th>
<th>Decision Makers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthcare cost differences</td>
<td>6.6</td>
<td>7.9</td>
</tr>
<tr>
<td>Epidemiology differences</td>
<td>6.1</td>
<td>7.5</td>
</tr>
<tr>
<td>Health care system diff</td>
<td>6.5</td>
<td>7.8</td>
</tr>
</tbody>
</table>

1 = not useful/less transferable; 10 = very useful/more transferable

Summary

• International use of pharmacoeconomic data growing
 – Improve value of healthcare
 – Manage healthcare budgets
• Multidisciplinary science: medicine, pharmacy, economics, decision sciences
• General methods well developed, but some areas – such as how best to transfer data across settings – still undergoing development
• Opportunities for data collection available throughout the drug development process
• International need for education of researchers, decision makers, and the general public