Sampling Uncertainty and Patient-Level Cost-Effectiveness Analysis (Part 2)

Henry A. Glick, Ph.D.
EPI 550
April 22, 2016

Concerns with CI for ICER

- If every experiment was pattern 1, probably wouldn’t have seen development of net monetary benefit and acceptability curves
- But experiments can occur in which CI for ICER have "odd properties" that most people at least initially find counter-intuitive
 - CI can be undefined
 - Referred to as Pattern 3
 - On real number line, either PE > LL > UL or LL > UL > PE
 - Referred to as Pattern 2

Second Example:
Replicates in all 4 quadrants
Naïve ordering DOESN’T work
Smart ordering EXTREMELY UNLIKELY TO / DOESN’T work
Consider confidence intervals for following experiment:

\[\Delta C=400; \text{SEC}=325; \Delta Q=.02; \text{SEQ}=.02; \rho=0.25; \]
\[\text{DOF}=498 \]
Identify Lines Through Origin That Exclude 2.5%?

Difference in Cost

Difference in QALYs

Experiment 3

Difference in QALYs

Implications for Acceptability curve?

Can Still Draw Curve

Difference in Cost

Difference in QALYs

Experiment 3

Difference in QALYs
But No Value of W Permits 95% Confidence

Implications for CI for ICER?

Can Still Define SOME CI (e.g., <84.48%), But Not 95%
Implications for CI for NMB for Particular W?

95% CI for NMB for Particular W Always Defined

Implications for NMB Graph?
Can Still Draw, But…..

No Value of W Permits 95% Confidence

Value of Information, Experiment 3

- 0 always falls within 95% confidence interval
Review of Results for Experiment 3

- **Acceptability curve**: Acceptability curve never intersects 0.025 and 0.975 on X-axis.

- **Confidence interval for ICER**: 95% CI for ICER cannot be defined.

- **Confidence frontier for NMB**: CL never intersect decision threshold (0 NMB / X-axis).

Pattern 3 Findings

- Refer to findings like those in experiment 3 as pattern 3 findings.
- 1 of 2 patterns that occur only when difference in effect is not significant:
 - $P>0.05$ for cost necessary but not sufficient condition
- Know we are observing a pattern 3 finding when:
 - Acceptability curve never intersects horizontal lines drawn at either 0.025 and 0.975 on Y axis
 - Confidence interval for the ICER is undefined
 - Neither NMB confidence limit curve intersects decision threshold (0 NMB / X-axis)

Region of Acceptability Related to Pattern 3

- For this curve, pattern 3 findings > 84.48% CI
Pattern 3 Findings (2)

Not confident value of two therapies differs

-∞ ← Willingness to Pay → ∞

Third Example:
Some replicates on both sides of Y-axis, but primarily in 2 or 3 quadrants
Naïve ordering doesn’t work, but smart ordering generally does

Consider a third experiment that doesn’t have either pattern 1 or pattern 3 findings

ΔC=35; SEC=777.06; ΔQ=.04; SEQ=.0224;
ρ=0.70625; DOF=498
P value for cost, 0.96
P value for QALYs, 0.07
(NEITHER SIGNIFICANTLY DIFFERENT)
Neither ΔC nor ΔQ significant, but can be 95% confident of value for W between 28,200 and 245,200

For all other values of W can’t be 95% confident

CI for ICER When Some Replicates Fall on Each Side of Y Axis?

Naïvete Okay if Density on One Side of X-Axis
What if Density Falls on Both Sides of Y-Axis

Pluses and Minuses of Ordering for CI for ICER

- Previously said that ordering can work
 - e.g., when all replicates fall on one side of X axis
- But conditions when it fails are well defined (e.g., for ΔQ, $p > 0.05$)
- CI for CER technically **NOT** an "order statistic"
 - Instead defined by lines through origin of CE plane that each exclude $\alpha/2\%$ of joint distribution
- Independent of whether lower limit is a larger or smaller number than upper limit, on CE plane, interval stretches counter-clockwise from lower (clockwise) limit to upper (counter-clockwise) limit

"Naïve" or "Smart" Ordering Can Work
All Replicates in Lower and Upper Right Quadrants

- Naïve ordering (smallest to largest ratio) works

Replicates in Upper Right and Left Quadrants

- Smart – but not naïve – ordering works

- Order from upper right to upper left quadrants
- Within each quadrant order from lowest to highest ratio

Replicates in 3 Quadrants

- Smart – but not naïve – ordering works

- Order from upper left to lower left to lower right quadrants
- Within each quadrant order from lowest to highest ratio
Will Smart Ordering Work?

Cost-Effectiveness Plane

Brown Table 5

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Mean</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incremental Cost</td>
<td>-1418</td>
<td>-1540 to -1295</td>
</tr>
<tr>
<td>Incremental QALYs</td>
<td>0.074</td>
<td>0.066 to 0.082</td>
</tr>
<tr>
<td>ICER</td>
<td>-19511</td>
<td>-23,815 to 2044</td>
</tr>
</tbody>
</table>
Authors: ΔC, -1418, 95%CI -1540 to -1295

• Elsewhere in paper, authors’ report 79% of distribution below X-axis

Too much density on both sides of X-axis to conclude ΔC significantly differs from 0

(If 21% above X-Axis, $p=0.58$)

95% CI cannot equal -1540 to -1295

Authors: ΔQ, 0.074, 95%CI 0.066 to 0.082

• At least 21% of distribution is to left of Y-axis
Too much density on both sides of Y-axis to conclude \(\Delta Q \) significantly differs from 0

(If 21%+ to left of Y-Axis, \(p > 0.58 \))

95% CI cannot equal 0.066 to 0.082

Authors: \(\Delta C / \Delta Q \), -19155, 95%CI -23,815 to $2044

If authors’ are correct that costs significantly reduced AND QALYs significantly increased, CI should indicate dominance (e.g., -23,815 to -2044)

Based on scatter plot, cannot identify line through origin that excludes 2.5%

No 95% CI can be defined!

When \(p > 0.05 \) for \(\Delta Q \), lower limit of CI for CER can never be smaller number than upper limit
Conclusion
Something very wrong with either Brown et al.’s data plotted on CE plane or with Brown’s reported statistics (Probable)
Probably mistakenly divided SE by N^{1/2}
CE Plane does not confirm any statistical conclusions reported in their Table V

Acceptability Curve

If Means and SE Were as Suggested…

cd=1818; sec=62.5; qd=0.074; seq=0.004; (rho=0.1??)
Unique Features of CI for ICER

- Role of ∞
 - For OR and RR, widest imaginable limits equal: $1/\infty$ to ∞
 - For difference, widest imaginable limits equal: $-\infty$ to ∞
 - Do $-\infty$ and $+\infty$ bound the widest CI for an ICER?

Unique Features (2)

- What’s inside and outside the interval?
 - For differences – e.g., NMB, OR, and RR – what’s inside interval ALWAYS falls somewhere in middle of real number line
 - What’s outside interval always falls on left and right sides of real number line

2) What’s Inside and Outside Interval?

- For CI for CER, what’s inside interval CAN fall somewhere in middle of real number line
- But can also fall on left and right sides of real number line
Unique Features (3)

• Reserved numbers for each Rx
 – For differences – e.g., NMB, OR, RR, and acceptability curve – CI has separate ranges of numbers reserved for when one therapy is larger/more effective/more acceptable than alternative versus when it isn’t
 • Difference >0, larger than alternative; <0 smaller than alternative
 • OR, RR <1, more effective than alternative; >1, less effective (or vice versa)
 • % acceptable > 0.5 greater likelihood of being good value; <0.5 smaller likelihood of being good value

3) Reserved Numbers

• Not true for CI for ICER
 – When $\Delta Q > 0$, CI can include all values between $-\infty$ and ∞
Misperceptions About Value When W = ∞

- If Rx deemed good value when WTP = 50k, must it also be good value when WTP = 100k? When WTP approaches ∞?
- When designing a study, if power is 50% for WTP=50k and 80% for WTP=100k must power be approaching 100% as WTP approaches ∞?

40% CI for ICER As Expected

75% CI for ICER As Expected
92.52% CI for CER ???

92.52% lower limit equals -∞*

Is 92.52% interval widest that can be defined?
 i.e., can we find lines through origin that
 omit less than 3.74%

(∗ Technically, lower and upper parametric limits equal +/-∞)

Yes, Lines Omitting < 3.74% Can Be Identified
Thus, Wider Intervals Can be Defined! e.g., 95% CI

What’s Included and What’s Excluded?

What’s Included and What’s Excluded?
Which is Lower and Which is Upper Limit?

95% CI for CER
What Values of WTP Fall Inside Interval?

-∞ to 0 (lower right quadrant)
0 to 28,200 (part of upper right quadrant that falls below / to right of upper limit)
245,200 to ∞ (part of lower left quadrant that falls below / to right of lower limit)

Interval: -∞ to 28,200 and 245,200 to ∞
28,200 to 245,200 fall outside interval

For what values of WTP can we be 95% confident of value?

If W = 50,000, which therapy is good value?

Confidences Statements for CI for CER

- Confident of value if:
 - P1: LL < UL < W (confident of good value)
 - P1: W < LL < UL (confident of bad value)
 - P2: UL < W < LL (confident of good value if PE<W; confident of bad value if PE>W)

- Not confident of value if:
 - P1: LL < W < UL
 - P2/P3: CI is undefined
 - P2: W < UL < LL
 - P2: UL < LL < W

Counter-Intuitive Relationships for CI for ICER

- When more than \(\alpha/2\)% of replicates fall on both sides of Y-axis, yet CI is defined:
 - Lower limit (e.g., 245,200) is a larger number than upper limit (e.g., 28,200)
 - ICER point estimate is either a smaller number (e.g., 875 (35/0.04)) than both limits or a larger number than both limits
 - Values of WTP included in interval range from \(-\infty\) to upper limit and from lower limit to \(\infty\)
 - e.g., \(-\infty\) to 28,200 and 245,200 to \(\infty\)
 - Values of WTP that are excluded from interval range from (smaller) upper limit to (larger) lower limit
 - Confident of value if WTP > upper limit and ≤ lower limit
Source of Counter-Intuitive Relationships

- Taking what are 2-dimensional relationships – in which \(\infty \) and \(-\infty \) represent the same line on the cost-effectiveness plane – and projecting them onto one-dimensional real number line
 - On which \(-\infty \) and \(\infty \) are polar opposites

Intervals on Real Number Line

- Can wider intervals be defined?
- What happens on real number line when they are defined?

What Happens When Wider Intervals are Defined?
CI for ICER More Intuitive if We Tape Ends of Real Number Line Together to Form a Ring (40% CI)

CI for ICER More Intuitive if We Tape Ends of Real Number Line Together to Form a Ring (75% CI)

CI for ICER More Intuitive if We Tape Ends of Real Number Line Together to Form a Ring (92% CI)
CI for ICER More Intuitive if We Tape Ends of Real Number Line Together to Form a Ring (95% CI)

Widest Definable Interval

CI for ICER More Intuitive if We Tape Ends of Real Number Line Together to Form a Ring (98.6% CI)
When Lower Limit is "Larger" than Upper Limit

- One of limits indicates that one of therapies may be delivering more health at increased or decreased cost
- Other limit indicates that alternative therapy may be delivering more health at increased or decreased cost
- Q is not statistically significant at α level represented by interval
- Interval thus includes y axis

When Lower Limit is "Larger" than Upper Limit (2)

- Point estimate is either larger than both limits or is smaller than both limits, but does what we expect for one of limits
 - If point estimate and lower limit are on same side of Y axis, point estimate is larger than lower limit (which is larger than upper limit)
 - If point estimate and upper limit are on same side of Y axis, point estimate is smaller than upper limit (which is smaller than lower limit)
Confidences Statements for CI for NMB

- If both confidence limits negative, 95% confident therapy is bad value
 - In this experiment, does not occur
- If both confidence limits positive, 95% confident therapy is good value
 - i.e., for values of WTP ≥ 28,200 and ≤ 245,200
- If one confidence limit positive and one negative, cannot be 95% confident value of 2 therapies differs
 - i.e., for values of WTP < 28,200 and > 245,200
Value of Information, Experiment 2

- Confidence interval for ICER
 ICER CI: (−∞ to 28,200 and 245,200 to ∞)

- Confidence frontier for NMB
 Lower limit intersects decision threshold (0 NMB / X-axis) at 28,200 and 245,200
Pattern 2 Findings

• Refer to findings like these as pattern 2 findings
• 1 of 2 patterns that occur only when difference in effect is not significant
• Know we are observing a pattern 2 finding when:
 – Confidence interval for ICER includes Y axis (i.e., LL > UL > PE OR PE > LL > UL)
 – One NMB confidence limit curve intersects decision threshold (0) twice; other limit never intersects decision threshold
 – Acceptability curve intersects a horizontal line drawn at either 0.025 and 0.975 on Y axis twice and never intersects other line

Region of Acceptability Related to Pattern 2

3 Ranges of WTP for Pattern 2 Findings

- In cases where some of boundaries between regions occur at negative values of willingness to pay, may not always observe all 3 regions on acceptability curve or NMB plot
Conclusions (1)

- For any given W, an experiment **ALWAYS** supports one of three conclusions:
 - Confident one therapy good value compared to alternative
 - Confident alternative therapy good value compared to first
 - Cannot be confident that two therapies differ in economic value

Conclusions (2)

- If goal is to identify which of 3 statements holds for a given W, confidence intervals for cost-effectiveness ratios, confidence intervals for NMB, and acceptability curves **ALWAYS** provide same answer
 - e.g., if W included within CI for CER, then:
 - CI for NMB that is calculated by use of W will include 0, and
 - Fraction of distribution that is acceptable at W will fall between horizontal lines that define decision threshold (e.g., between 0.025 and 0.975)

Conclusions (3)

- Confidence intervals for cost-effectiveness ratios provide concise information (i.e., 0, 1, or 2 numbers) that allows determination – based on a particular W – of confidence about a therapy’s value
- Acceptability curves provide added advantage of allowing decision makers to assess alternate levels of confidence if such alternate levels are of interest