ORDINARY LEAST SQUARES REGRESSION (OLS)

\[Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_k X_k + \epsilon \]

- Coefficient on treatment indicator produces an estimate of \(\Delta C \)
- Assumptions generally violated with cost data:
 - Variance of error term is constant.
 * Heteroskedasticity - Unbiased coefficients, but potentially inefficient
 - Error term is normally distributed
 * Violation has no effect on coefficients
 * Necessary only for test of statistical significance
 * In large samples we can rely on the central limit theorem
 * Has been shown that regression analysis is robust against violations of normality
 * Difficult to defend in practice
 * See tests for normality in Appendix 2

See Computer Output, p. 11
OLS RESULT

<table>
<thead>
<tr>
<th>Cost</th>
<th>S.E.</th>
<th>t</th>
<th>p</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>4027</td>
<td>853.8</td>
<td>4.72</td>
<td>0.000</td>
<td>2343 to 5711</td>
</tr>
</tbody>
</table>

```plaintext
replace treat=0
predict ols_0
replace treat=1
predict ols_1
replace treat=tmptreat
gen ols_dif=ols_1-ols_0

.tabstat ols_1 ols_0 ols_dif
stats |     ols_1     ols_0   ols_dif---------+------------------------------    mean |  10845.52   6818.93  4026.585----------------------------------------

Univariate Result:

.tabstat cost if treat==1
   variable |     meanGROUP----------------------------------------
   cost |  10832.22------------------------

.tabstat cost if treat==0
   variable |     meanGROUP----------------------------------------
   cost |  6832.225------------------------
```

LOG OF COSTS: ORDINARY LEAST SQUARES REGRESSION

- Coefficient on treatment indicator produces an estimate of the percentage difference in mean costs between treatment groups.
- For cost effectiveness analysis we are interested in the predicted mean costs of treatment. With a log of cost regression we are predicting log of costs, not costs.
 - Is it possible to reliably transform predicted log of costs into an unbiased prediction of mean costs?
 - Not trivial because the mean of the log of costs is not equal to the log of the mean of costs

 i.e. $E(\ln(y)/x)$ is not equal to $\ln(E(y/x))$

- Residual may not be normally distributed even after log transformation.

See Computer Output, p. 11
RETRANSFORMATION AFTER THE LOG OF COST REGRESSION (I)

- The result of the regression is the predicted log of costs (\bar{Z}_i) where:

\[
\bar{Z}_i = \hat{\alpha} + X_i \hat{\beta} + T_i \hat{\theta}_T
\]

- Estimation of the effect of treatment on predicted costs is a nonlinear retransformation of the regression coefficients

- Nonlinear retransformations have to account for two complexities
 - In the logged scale, the (multiplicative) effect of the treatment group is estimated holding all else equal; however, exponentiation of predicted log costs (to estimate costs) reintroduces the covariate imbalances
 - Simple exponentiation of the predicted log costs leads to biased estimates (Duan, 1983)

RETRANSFORMATION AFTER THE LOG OF COST REGRESSION (II)

- Avoiding reintroduction of covariate imbalance (method of recycled predictions)
 - Code everyone as if they were in treatment group A and predict \bar{Z}_{iA}
 - Code everyone as if they were in treatment group B and predict \bar{Z}_{iB}

- Avoiding the bias of simple exponentiation of the predicted log (smearing retransformation)
 - Retransform the predicted log of costs (both \bar{Z}_{iA} and \bar{Z}_{iB}) into the original scale of costs by use of a smearing factor ϕ as follows:

\[
E(Y_{iA}/X_i) = \Phi \cdot e^{\bar{Z}_{iA}}
\]

\[
E(Y_{iB}/X_i) = \Phi \cdot e^{\bar{Z}_{iB}}
\]

where

\[
\Phi = \frac{1}{N} \sum_{i=1}^{N} e^{(\bar{Z}_i - \bar{Z}_i)}
\]
SMEARING AND HETEROSKEDASTICITY (I)

- Use of a single smearing factor introduces bias when there is heteroskedasticity in the data

- For example:
 - If the variance of the residuals is greater for the treatment group than for the comparison group, the smearing correction parameter will underestimate the costs for the treatment group and overestimate the costs for the standard

- Solution:
 - Estimate the smearing correction parameter separately for the two treatment groups
 * For those actually in group A
 \[\Phi_A = \frac{1}{N_A} \sum_{i=1}^{N_A} e^{(z_{a_i} - z_{a_A})} \]
 * For those actually in group B
 \[\Phi_B = \frac{1}{N_B} \sum_{i=1}^{N_B} e^{(z_{b_i} - z_{b_B})} \]

SMEARING AND HETEROSKEDASTICITY (II)

- Retransformation in the face of heteroskedasticity
 - When everyone is coded as if they are in treatment group A
 \[E(Y_{A_i}/X_i) = \Phi_A \ e^{(z_{a_i})} \]
 - When everyone is coded as if they are in treatment group B
 \[E(Y_{B_i}/X_i) = \Phi_B \ e^{(z_{b_i})} \]

- See Breusch-Pagan test for heteroskedasticity in Appendix 2
- See Manning (1998) for unbiased estimation when heteroskedasticity exists in the data
- See Ai and Norton (2000) for estimates of standard errors for the retransformation problem with heteroskedasticity
LOG RESULT - SMEARING FACTOR:

RUN LOGIT

 . regress lcost treat $ivar

ESTIMATE THETA

**smearing factor comes from the regression
* residual
predict res, r
replace res=exp(res)

***HOMOSKEDASTIC SMEARING FACTOR
sum res
scalar sm=r(mean)

***HETEROSKEDASTIC SMEARING FACTORS
sum res if treat==0
scalar sm0=r(mean)
sum res if treat==1
scalar sm1=r(mean)

. display sm
1.3056459

. display sm0
1.4702791

. display sm1
1.1410127

LOG RESULT - RETRANSFORMATION:

***ESTIMATE Z’S FOR EACH TREATMENT GROUP
replace treat=0
predict lc0
replace treat=1
predict lc1
replace treat=tmp

*****HETERO SKE DASTIC PREDICTION
***RETRANSFORM AND APPLY SMEARING FACTOR
gen lol_0=exp(lc0)*sm0
gen lol_1=exp(lc1)*sm1
gen lol_t=lol_0 if treat==0
 replace lol_t=lol_1 if treat==1
gen lol_dif=lol_1-lol_0

. tabstat lol_1 lol_0 lol_dif stats | lol_1 lol_0 lol_dif
---------+------------------------------ mean | 11156.22 6888.652 4267.573

******HOMOSKEDASTIC PREDICTION
***RETRANSFORM AND APPLY SMEARING FACTOR
gen lolho_0=exp(lc0)*sm
ngen lolho_1=exp(lc1)*sm
ngen lolho_dif=lolho_1-lolho_0
ngen lolho_t=lolho_0 if treat==0
 replace lolho_t=lolho_1 if treat==1

. tabstat lolho_1 lolho_0 lolho_dif stats | lolho_1 lolho_0 lolho_dif
---------+------------------------------ mean | 12765.92 6117.301 6648.621

From pp. 2 and 4

*** OLS (untransformed)

```
. regress cost treat $ivar

          Source |      SS      df       MS        Number of obs =     200
----------+----------------------------     F(  6,   193) =    5.45
Model | 1.1771e+09    6   196177149     Prob > F      =  0.0000
Residual | 6.9525e+09  193  36023463.2     R-squared     =  0.1448
----------+----------------------------     Adj R-squared =  0.1182
Total | 8.1296e+09  199  40852217.5     Root MSE      =    6002

                      | Coef.  Std. Err.    t   P>|t|  [95% Conf. Interval]
---------------------+---------------------------------------------
treat |  4026.585  853.8104   4.72  0.000  2342.587    5710.582
age |   75.1648  42.17426   1.78  0.076 -8.016836    158.3464
ejfract | -76.18302  64.84257  -1.17  0.241 -204.0741    51.70804
sex |  -652.0594  975.3994  -0.67  0.505  -2575.87    1271.752
etiology |  2264.755  887.3851   2.55  0.011  514.5371   4014.972
race |  481.5117  1284.211   0.37  0.708 -2051.378    3014.401
_cons |  2676.532   3087.71   0.87  0.387 -3413.456     8766.52
```

***Log costs

```
. regress lcost treat $ivar

          Source |       SS       df       MS       Number of obs =     200
----------+------------------------------    F(  6,   193) =   11.41
Model |  39.2814791     6  6.54691318    Prob > F      =  0.0000
Residual |  110.692964   193  .573538672    R-squared     =  0.2619
----------+------------------------------    Adj R-squared =  0.2390
Total |  149.974443   199  .753640416    Root MSE      =  .75732

                      | Coef.  Std. Err.    t   P>|t|   [95% Conf. Interval]
---------------------+---------------------------------------------------
treat |  .7356582  .107733  6.83  0.000  .5231724    .9481441
age |  .0072738  .0053215  1.37  0.173  -.003222    .0177696
ejfract | -.016828  .0081818 -2.06  0.041  -.0329652   -.0006908
sex |  -.112238  .1230754 -0.91  0.363  -.3549834   .1305074
etiology |  .3244058  .1119698  2.90  0.004   .1035643   .5452473
race |  .3329655  .162041  2.05  0.041  .0133669   .6525641
_cons |  7.998734  .3896055 20.53  0.000   7.230302    8.767165
```

11
APPENDIX 2. Technical Notes on Diagnostic Tests

This section provides details on the statistical tests discussed in this lecture.

1. Skewness/Kurtosis
2. Heteroskedasticity test (Breusch-Pagan test)
3. Modified Park test (GLM family test)
4. Pregibon Link test
5. Modified Hosmer Lemeshow test
6. Pearson’s Correlation test
7. Copas test

Tests for Normality and Heteroskedasticity

<table>
<thead>
<tr>
<th>Test</th>
<th>Purpose</th>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skewness/Kurtosis</td>
<td>Test normality of residuals</td>
<td>If skewness ≠0 or kurtosis>3 then residuals not normally distributed (OLS assumption violated)</td>
</tr>
<tr>
<td>Breusch-Pagan</td>
<td>Test whether residuals are heteroskedastic</td>
<td>If kurtosis >3 on log-scale residuals GLM may suffer precision losses</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If reject null then residuals are heteroskedastic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If log-scale residuals are heteroskedastic, Log OLS will be biased if appropriate smearing correction not applied</td>
</tr>
</tbody>
</table>

Test for Heteroskedasticity (Breusch-Pagan test)

Is the treatment variable heteroskedastic?

After OLS cost regression:
e.g. regress cost treat $ivar
hettest treat

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: treat

\[
\text{chi2}(1) = 2.03 \\
\text{Prob} > \text{chi2} = 0.1546
\]

After log OLS cost regression:
e.g. regress lcost treat $ivar
hettest treat

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: treat

\[
\text{chi2}(1) = 32.26 \\
\text{Prob} > \text{chi2} = 0.0000
\]

YES in log model! (Also heteroskedastic in race & etiology)

See Computer Output, pp. 24 and 25
Summary of Results: Normality and Heteroskedasticity

After OLS cost regression:

Normality of Residuals
 Coefficient of Skewness: 1.96
 Coefficient of Kurtosis: 8.85
 Joint test statistic of Skewness/Kurtosis: 72.1 (p<0.0000)

Heteroskedasticity in treatment variable
 Breusch-Pagan test statistic: 2.0 (p=0.15)

After Log-OLS regression:

Normality of Residuals
 Co-efficient of Skewness: -0.12
 Co-efficient of Kurtosis: 2.9
 Joint test statistic of Skewness/Kurtosis: 0.52 (p=0.77)

Heteroskedasticity in treatment variable
 Breusch-Pagan test statistic: 32.3 (p=0.0000)

• OLS residuals are homoskedastic in treatment variable BUT they are not normally distributed!
• Log-OLS residuals are normal BUT heteroskedastic in treatment variable!

Tests for Determining Link Function and Family Distribution for GLM

<table>
<thead>
<tr>
<th>Test</th>
<th>Purpose</th>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Modified Park</td>
<td>Determine family distribution for GLM</td>
<td>If $\lambda=0$ Gaussian, If $\lambda=1$ Poisson, If $\lambda=2$ Gamma, If $\lambda=3$ Inverse Gaussian</td>
</tr>
</tbody>
</table>

Modified Park Test (GLM family test)

Purpose: To determine family distribution for GLM model (i.e. relationship between mean and variance)

AFTER GLM COST REGRESSION:
e.g. glm cost treat \midivar, family(gamma) link(log)

(1) Predict value of y and log transform it
gen inyhat=ln(yhat)

(2) Save raw scale residuals and square them
gen res=cost-yhat
gen r2=((res)^2)

(3) Regress ln(r2) on ln(yhat) and a constant using GLM with gamma distribution
glm r2 inyhat, link(log) family(gamma) robust nolog

(4) Coefficient on ln(yhat) gives the family
 If $\lambda=0$ Gaussian NLLS
 If $\lambda=1$ Poisson
 If $\lambda=2$ Gamma
 If $\lambda=3$ Inverse Gaussian or Wald

test inyhat=0
test inyhat=1
test inyhat=2
test inyhat=3

See Computer Output, p. 15
Modified Park Test Results

Modified Park Test found $\lambda = 0.81$ (Poisson!)

- Test Ho $\lambda=1$ (p=0.74) \Rightarrow Poisson
- Test Ho $\lambda=2$ (p=0.04) \Rightarrow Not Gamma
- Test Ho $\lambda=3$ (p=0.000) \Rightarrow Not Inverse Gaussian

(Gaussian) $0 < \lambda < 1$ (Poisson) Compromise!

Within-sample Diagnostics for Model Fit

<table>
<thead>
<tr>
<th>Test</th>
<th>Purpose</th>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Pregibon Link</td>
<td>Test linearity of response on scale of estimation</td>
<td>If reject null then problem with the functional form of X</td>
</tr>
<tr>
<td>5. Modified Hosmer Lemeshow</td>
<td>Determine systematic bias in fit on raw scale</td>
<td>If reject null and observe systematic pattern then problem with either the link function or functional form of X</td>
</tr>
<tr>
<td>6. Pearson Correlation</td>
<td>Determine systematic bias in fit on raw scale</td>
<td>If reject null and high correlation co-efficient then problem with either the link function or functional form of X</td>
</tr>
</tbody>
</table>

Pregibon’s Link Test
- Purpose: To determine linearity of response on scale of estimation

After COST REGRESSION:
e.g. glm cost treat $\$var, family(gamma) link(log)

(1) Create two new variables
(a) Create prediction of (xb)
 predict xb, xb

(b) Create variable of squared prediction
 gen xbsq=xb^2

(2) Refit model with the two new variables as the only predictors
 glm cost xb xbsq, family(gamma) link(log) robust

(3) Co-efficient on square of the prediction should not be significantly different from zero. i.e. test Ho: co-efficient on xbsq=0
 lincom xbsq (alternatively, test xbsq)

(4) If fail to reject null (i.e. xbsq not significant predictor) then keep model the same; if reject null then problem with functional form of x

See Computer Output, p. 27
Modified Hosmer Lemeshow Test

Purpose: To determine systematic pattern of bias in model fit on raw scale

After COST REGRESSION:
 e.g. glm cost treat $ivar, family(gamma) link(log)

(1) Obtain predicted value of y on raw scale
 predict yhat

(2) Compute residual on raw scale
 gen res=cost-yhat

(3) Create 10 groups, sorted by x or xb
 xtile xbtile=xb, nq(10)
 tab xbtile, gen(xbt)

(4) Conduct an F-test of whether the mean of the raw scale residuals across all groups of the deciles are not significantly different from zero
 reg res xbt1 xbt2 xbt3 xbt4 xbt5 xbt6 xbt7 xbt8 xbt9 xbt10, nocons robust
test xbt1 xbt2 xbt3 xbt4 xbt5 xbt6 xbt7 xbt8 xbt9 xbt10

(5) Look for systematic patterns by plotting mean residuals by deciles (e.g. U-shape)

(6) If reject null and find systematic pattern then there is a problem with either the left hand side (wrong power function) or right hand side (wrong functional form of x)

See Computer Output, p. 28

Pearson’s Correlation Test

Purpose: To determine systematic bias in the prediction of E(y|x)

After COST REGRESSION:
 e.g. glm cost treat $ivar, family(gamma) link(log)

(1) Obtain predicted value of y on raw scale
 predict yhat

(2) Compute residual on raw scale
 gen res=cost-yhat

(3) Check correlation between res and yhat
 pwcorr yhat res, sig

<table>
<thead>
<tr>
<th>yhat</th>
<th>res</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0000</td>
<td></td>
</tr>
<tr>
<td>-0.0335 1.0000</td>
<td>0.6372 => p-value</td>
</tr>
</tbody>
</table>

(4) If statistic is significantly different from zero then model is providing a biased prediction (i.e. estimated impact of the x on y (slope) is either too high or too low) and suggests that either the link function or linear specification is incorrect
Summary of Results

<table>
<thead>
<tr>
<th></th>
<th>Pregibon Link Test</th>
<th>Modified Hosmer-Lemeshow test</th>
<th>Pearson correlation test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stat</td>
<td>p</td>
<td>Stat</td>
</tr>
<tr>
<td>OLS</td>
<td>0.17</td>
<td>0.68</td>
<td>0.69</td>
</tr>
<tr>
<td>Log OLS (Homo)</td>
<td>11.78</td>
<td>0.001</td>
<td>1.70</td>
</tr>
<tr>
<td>Log OLS (Hetero)</td>
<td>11.78</td>
<td>0.001</td>
<td>0.70</td>
</tr>
<tr>
<td>GLM gamma/log</td>
<td>1.39</td>
<td>0.24</td>
<td>0.65</td>
</tr>
<tr>
<td>GLM poisson/log</td>
<td>0.09</td>
<td>0.77</td>
<td>0.58</td>
</tr>
</tbody>
</table>

- Both Log OLS models (with homoskedastic as well as heteroskedastic retransformation) fail the Pregibon Link test and Pearson Correlation test!

Test for Model Fit Within and Out-of-Sample

<table>
<thead>
<tr>
<th>Test</th>
<th>Purpose</th>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copas</td>
<td>Test for overfitting using split sample cross-validation</td>
<td>If reject null, then evidence of overfitting</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Use to rank models since test fails often</td>
</tr>
</tbody>
</table>

Copas Test
Purpose: To test for overfitting using split sample cross validation

(1) Randomly split sample into two equal groups A & B
(2) Estimate model on sample A and retain its co-efficients
(3) Forecast to sample B
\[\hat{y}_b = X_b \hat{\beta}_A \]

(4) Regression model for sample B
\[y_b = \delta_0 + \delta_1 \hat{y}_b + \eta \]
Test \(\hat{\delta}_1 = 0 \)

Alternatively,
\[res_b = \delta_0 + \delta_1 \hat{y}_b + \eta \]
Test \(\hat{\delta}_1 = 0 \)

(5) If reject null hypothesis, then overfitting may be a problem - need to prune the model and check for outliers

(6) Repeat split sample experiment (Steps (1) to (4)) for 1000 times to get distribution and report the % of times the null is rejected – use to rank models, since test of \(\delta_1=1 \) often fails
Summary of Results

<table>
<thead>
<tr>
<th></th>
<th>Using Own-Sample Predictions</th>
<th>Using Cross-Sample Predictions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Statistic</td>
<td>P *</td>
</tr>
<tr>
<td>OLS</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Log OLS (Homo)</td>
<td>7.65</td>
<td>0.707</td>
</tr>
<tr>
<td>Log OLS (Hetero)</td>
<td>2.84</td>
<td>0.284</td>
</tr>
<tr>
<td>GLM gamma/log</td>
<td>0.84</td>
<td>0.044</td>
</tr>
<tr>
<td>GLM poisson/log</td>
<td>0.70</td>
<td>0.029</td>
</tr>
</tbody>
</table>

* Represents proportion of 1000 replicates for which the F-statistic is significant at 5% level

- OLS model shows significant degree of overfitting (34.5% of the replicates fail Copas test using out-of-sample predictions)
- GLM poisson/log link model performs best (2.9% & 3.8% replicates fail Copas test within-sample & out-of-sample, respectively)

See Summary Table, p. 29
Tests for Normality of Residuals

Are the residuals normally distributed?

(1) Skewness for a normal distribution is zero
 Negative values – left skewed data
 Positive values – right skewed data

(2) Kurtosis for a standard normal distribution is 3

After OLS cost regression:

. sum res_ols, detail

Residuals

Percentiles Smallest
1% -6865.266 -6954.6
5% -6285.974 -6933.082
10% -5321.376 -6797.45
25% -3998.92 -6778.228
50% -1597.02 2.78e-06
75% 2502.18 17393.61
90% 7335.55 17773.35
95% 10781.04 25293.73
99% 21533.54 32942.74

Largest Std. Dev. 5910.781

Mean 2.78e-06

Sum of Wgt. 200

Skewness 1.960199

Kurtosis 8.85317

. sktest res_ols

Skewness/Kurtosis tests for Normality

<table>
<thead>
<tr>
<th>Variable</th>
<th>Pr(Skewness)</th>
<th>Pr(Kurtosis)</th>
<th>adj chi2(2)</th>
<th>Prob>chi2</th>
</tr>
</thead>
<tbody>
<tr>
<td>res_ols</td>
<td>0.000</td>
<td>0.000</td>
<td>72.09</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

NO FOR OLS
After log OLS cost regression:

```plaintext
. sum res_log, detail

Residuals
-----------------------------------------------------------
Percentiles   Smallest
1%    -1.879498   -2.256186
5%    -1.2353   -2.033567
10%    -1.025368   -1.725428       Obs                 200
25%    -.4435903   -1.623668       Sum of Wgt.         200
50%    -.0557076                   Mean          -7.28e-10
75%     .5797378    1.407953       Largest Std. Dev.  .745819
90%     .9839813    1.572954       Variance        .556246
95%     1.207211    1.787229       Skewness      -.1200774
99%     1.680091    1.860877       Kurtosis       2.902033

. sktest res_log

Skewness/Kurtosis tests for Normality
------- joint ------
Variable |  Pr(Skewness)       Pr(Kurtosis)    adj chi2(2)    Prob>chi2
----------+----------------------------------------
res_log   |  0.475           0.945             0.52        0.7707

YES FOR LOG
```
/* Modified Park Test */
. gen r2 = ((cost-yhat)^2)
. gen lnyhat = ln(yhat)

. glm r2 lnyhat , link(log) family(gamma) robust nolog

Generalized linear models
Optimization : ML: Newton-Raphson
Residual df = 198
Scale parameter = 5.37055
Deviance = 556.0966603
(1/df) Deviance = 2.808569
Pearson = 1063.368955
(1/df) Pearson = 5.37055

Variance function: V(u) = u^2
[Gamma]
Link function : g(u) = ln(u)
[Log]
Standard errors : Sandwich

Log pseudo-likelihood = -3667.729811
AIC = 36.6973
BIC = -492.9701783

| Robust |
|----------------|-----------------|
| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|----------------|-------|------------|------|------|----------------------|
| r2 | 0.8059514 | 0.6058605 | 1.33 | 0.183 | -0.3815133 | 1.993416 |
| lnyhat | 10.04718 | 5.417169 | 1.85 | 0.064 | -5.702812 | 20.66463 |

. test lnyhat==1
(1) [r2]lnyhat = 1

 chi2(1) = 0.10
 Prob > chi2 = 0.7488

. test lnyhat==2
(1) [r2]lnyhat = 2

 chi2(1) = 3.88
 Prob > chi2 = 0.0487

. test lnyhat==3
(1) [r2]lnyhat = 3

 chi2(1) = 13.11
 Prob > chi2 = 0.0003
. /* PREGIBON LINK TEST */

. gen xbsq=xb^2

. glm cost xb xbsq, family(gamma) link(log) robust nolog

Generalized linear models No. of obs = 200
Optimization : ML: Newton-Raphson Residual df = 197
Scale parameter = .5366878 (1/df) Deviance = .5128996
Deviance = 101.0412175 (1/df) Pearson = .5366878
Pearson = 105.727504

Variance function: V(u) = u^2 [Gamma]
Link function : g(u) = ln(u) [Log]
Standard errors : Sandwich

Log pseudo-likelihood = -2008.934778 AIC = 20.11935
BIC =-942.7273038

| Robust |
|--------------------------|-----------------|
|cost| Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval]|
|xb | 16.67377| 13.38723 | 1.25 | 0.213| -9.564707 | 42.91225|
|xbsq| -.863838| .7334817 | -1.18| 0.239| -2.301436 | .5737597|
|_cons| -71.02776| 61.05194 | -1.16| 0.245| -190.6874 | 48.63184|

. test xbsq

(1) [cost]xbsq = 0

 chi2(1) = 1.39
 Prob > chi2 = 0.2389
/* MODIFIED HOSMER LEMESHOW TEST */
.xtile xbtile=xb, nq(10)
.tab xbtile, gen(xbt)
10 quantiles of xb

<table>
<thead>
<tr>
<th>of xb</th>
<th>Freq.</th>
<th>Percent</th>
<th>Cum.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>10.00</td>
<td>10.00</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>10.00</td>
<td>20.00</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>10.00</td>
<td>30.00</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>10.00</td>
<td>40.00</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>10.00</td>
<td>50.00</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>10.00</td>
<td>60.00</td>
</tr>
<tr>
<td>7</td>
<td>20</td>
<td>10.00</td>
<td>70.00</td>
</tr>
<tr>
<td>8</td>
<td>20</td>
<td>10.00</td>
<td>80.00</td>
</tr>
<tr>
<td>9</td>
<td>20</td>
<td>10.00</td>
<td>90.00</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>10.00</td>
<td>100.00</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>Total</td>
<td>200</td>
<td>100.00</td>
<td></td>
</tr>
</tbody>
</table>

.reg res xbt1 xbt2 xbt3 xbt4 xbt5 xbt6 xbt7 xbt8 xbt9 xbt10, nocons robust
Regression with robust standard errors
Number of obs = 200
F(10, 190) = 0.65
Prob > F = 0.7652
R-squared = 0.0293
Root MSE = 5983.8

| | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|--------|--------|-----------|-------|-------|---------------------|
| xbt1 | -858.0814 | 1340.247 | -0.64 | 0.523 | -3501.756 1785.593 |
| xbt2 | -1082.153 | 814.6391 | -1.33 | 0.186 | -2689.051 524.7458 |
| xbt3 | 2533.632 | 1489.641 | 1.70 | 0.091 | -404.7272 5471.991 |
| xbt4 | -390.9682 | 870.4381 | -0.45 | 0.654 | -2107.932 1325.995 |
| xbt5 | -10.61213 | 1267.625 | -0.01 | 0.993 | -2521.927 2500.702 |
| xbt6 | 960.5702 | 975.5737 | 0.98 | 0.326 | -963.7763 2884.917 |
| xbt7 | 170.9792 | 1267.625 | 0.13 | 0.893 | -2329.447 2671.405 |
| xbt8 | -330.7193 | 1198.243 | -0.28 | 0.783 | -2694.287 2032.848 |
| xbt9 | -519.5159 | 1630.368 | -0.32 | 0.750 | -3735.462 2696.43 |
| xbt10 | -686.1769 | 2047.685 | -0.34 | 0.738 | -4725.293 3352.94 |

.test xbt1 xbt2 xbt3 xbt4 xbt5 xbt6 xbt7 xbt8 xbt9 xbt10
(1) xbt1 = 0
(2) xbt2 = 0
(3) xbt3 = 0
(4) xbt4 = 0
(5) xbt5 = 0
(6) xbt6 = 0
(7) xbt7 = 0
(8) xbt8 = 0
(9) xbt9 = 0
(10) xbt10 = 0
F(10, 190) = 0.65
Prob > F = 0.7652
SUMMARY OF DIAGNOSTIC TEST RESULTS

<table>
<thead>
<tr>
<th></th>
<th>Pregibon Link</th>
<th>Modified Hosmer-Lemeshow</th>
<th>Pearson correlation</th>
<th>Modified Park</th>
<th>Copas (Rank)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLS</td>
<td>Passed</td>
<td>Passed</td>
<td>Passed</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Log OLS (Homo)</td>
<td>Failed</td>
<td>Passed</td>
<td>Failed</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>Log OLS (Hetero)</td>
<td>Failed</td>
<td>Passed</td>
<td>Failed</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>GLM gamma/log</td>
<td>Passed</td>
<td>Passed</td>
<td>Passed</td>
<td>Failed</td>
<td>2</td>
</tr>
<tr>
<td>GLM poisson/log</td>
<td>Passed</td>
<td>Passed</td>
<td>Passed</td>
<td>Passed</td>
<td>1</td>
</tr>
</tbody>
</table>

- GLM poisson/log link seems to have performed well on all tests as compared to other models!
- However, in this example dataset, the incremental costs estimated from the GLM poisson ($4,018) and untransformed OLS ($4,027) were not very different [although Log OLS (homoskedastic) was quite different ($6649)]
- In other examples, we have seen substantial differences across models!
APPENDIX 3. STATA PROGRAMS

This section provides sample programs for the topics discussed in this lecture.

1. Multivariable.do
2. Insideboot.do
3. Bootmulti.do
4. Bootresult.do
5. Multivariable_tests.do
6. Mse_ape_copastest.do

1. Multivariable.DO
 **
 ***THIS PROGRAM DOES THE MULTIVARIABLE ANALYSES
 **
 clear
 set memory 10000
 capture log close
 log using multivariable.log, replace

 use mdmcea

 ********************control variables
 global ivar "age ejfract sex etiology race"
 ********************control variables

 **create log of costs
 gen lcost=log(cost)
 gen tmptreat=treat

 *****OLS
 regress cost treat $ivar
 predict ols_t
 replace treat=0
 predict ols_0
 replace treat=1
 replace treat=tmptreat
 gen ols_dif=ols_1-ols_0
 tabstat cost if treat==1
 tabstat cost if treat==0
 tabstat ols_1 ols_0 ols_dif

 ***log costs
 regress lcost treat $ivar

 ***smearing factor
 capture drop res
 predict res, r
 replace res=exp(res)
 sum res
 scalar sm=r(mean)
 sum res if treat==0
 scalar sm0=r(mean)
 sum res if treat==1
 scalar sm1=r(mean)

 display sm
 display sm0
 display sm1

 replace treat=0
 predict l0
 replace treat=1
 predict l1
 replace treat=tmptreat

 gen lols_0=exp(l0)*sm0
 gen lols_1=exp(l1)*sm1
 gen lols_dif=lols_1-lols_0
 tabstat lols_1 lols_0 lols_dif

 ****assume homoskedastic!
 gen lolsho_0=exp(l0)*sm
 gen lolsho_1=exp(l1)*sm
 gen lolsho_dif=lolsho_1-lolsho_0
gen lolsho_t=lolsho_0 if treat==0
replace lolsho_t=lolsho_1 if treat==1

tabstat lolsho_1 lolsho_0 lolsho_dif

*****glm model (gamma/log link)
glm cost treat $ivar, family(gamma) link(log)
*predict gam_t
replace treat=0
predict gam_0
replace treat=1
predict gam_1
gen gam_dif=gam_1-gam_0
replace treat=tmptreat
gen gam_t=gam_0 if treat==0
replace gam_t=gam_1 if treat==1

posting gam_1 gam_0 gam_dif

******glm model (poisson/log link)
glm cost treat $ivar, family(poisson) link(log)
*predict pois_t
replace treat=0
predict pois_0
replace treat=1
predict pois_1
gen pois_dif=pois_1-pois_0
replace treat=tmptreat
gen pois_t=pois_0 if treat==0
replace pois_t=pois_1 if treat==1

tabstat pois_1 pois_0 pois_dif

sum ols_1 lols_1 lolsho_1 gam_1 pois_1
sum ols_0 lols_0 lolsho_0 gam_0 pois_0
sum ols_dif lols_dif lolsho_dif gam_dif pois_dif

log close

2. Insideboot.do
**
***THIS PROGRAM IS JUST LIKE multivariable.do
***BUT IT IS A VERSION THAT IS CALLED BY bootmulti.do
***IN ORDER TO GET THE CONFIDENCE INTERVALS
**

******control variables
global ivar "age ejfract sex etiology race"
**

**create log of costs
gen lcost=log(cost)

gen tmptreat=treat

******OLS
regress cost treat $ivar
*predict ols_t
replace treat=0
predict ols_0
replace treat=1
predict ols_1
gen ols_dif=ols_1-ols_0
replace treat=tmptreat
gen ols_t=ols_0 if treat==0
replace ols_t=ols_1 if treat==1

tabstat ols_1 ols_0 ols_dif

tabstat cost if treat==1
tabstat cost if treat==0

log costs
regress lcost treat $ivar

***smearing factor
capture drop res
predict res, r
replace res=exp(res)
sum res
scalar sm=r(mean)
sum res if treat==0
```bash
scalar sm0=r(mean)
scalar sm1=r(mean)
display sm
display sm0
display sm1
replace treat=0
predict lc0
replace treat=1
predict lc1
replace treat=tmptreat

gen lols_0=exp(lc0)*sm0
gen lols_1=exp(lc1)*sm1
gen lols_t=lols_0 if treat==0
  replace lols_t=lols_1 if treat==1
gen lols_dif=lols_1-lols_0
tabstat lols_1 lols_0 lols_dif

****assume homoskedastic!
gen lolsho_0=exp(lc0)*sm
gen lolsho_1=exp(lc1)*sm
/gen lolsho_t=lolsho_1-lolsho_0
/gen lolsho_dif=lolsho_1-lolsho_0
  replace lolsho_t=lolsho_1 if treat==1
tabstat lolsho_1 lolsho_0 lolsho_dif

*****glm model (gamma/log link)
glm cost treat $ivar, family(gamma) link(log)
*predict gam_t
replace treat=0
predict gam_0
replace treat=1
predict gam_1
gen gam_dif=gam_1-gam_0
replace treat=tmptreat
gen gam_t=gam_0 if treat==0
replace gam_t=gam_1 if treat==1
tabstat gam_1 gam_0 gam_dif

*****glm model (poisson/log link)
glm cost treat $ivar, family(poisson) link(log)
*predict pois_t
replace treat=0
predict pois_0
replace treat=1
predict pois_1
gen pois_dif=pois_1-pois_0
replace treat=tmptreat
gen pois_t=pois_0 if treat==0
replace pois_t=pois_1 if treat==1
tabstat pois_1 pois_0 pois_dif
```

```bash
sum ols_1 lols_1 lolsho_1 gam_1 pois_1
sum ols_0 lols_0 lolsho_0 gam_0 pois_0
sum ols_dif lols_dif lolsho_dif gam_dif pois_dif
sum ols_1, meanonly
gen ols1=r(mean)
sum ols_0, meanonly
gen ols0=r(mean)
sum lolsho_1, meanonly
gen lolsho1=r(mean)
sum lolsho_0, meanonly
gen lolsho0=r(mean)
sum lamlosho_1, meanonly
gen lamlosho1=r(mean)
sum lamlosho_0, meanonly
gen lamlosho0=r(mean)
sum gam_1, meanonly
gen gam1=r(mean)
sum gam_0, meanonly
gen gam0=r(mean)
sum pois_1, meanonly
gen pois1=r(mean)
sum pois_0, meanonly
gen pois0=r(mean)
```
3. Bootmulti.do

***** THIS PROGRAM RUNS insideboot.do TO GET bootresult.dta
***** AFTER RUNNING THIS PROGRAM, RUN bootresult.do
***** TO GET CONFIDENCE INTERVALS
version 7
* BOOTSTRAP METHOD

capture erase templ.dta
capture program drop loopm

program define loopm
local i=`1'
while `i'`>0 { local i = `i' - 1
 use mdmcea
 preserve
 keep if treat==0
 bsample
 save temp1,replace
 restore
 keep if treat==1
 bsample
 append using temp1
 save temp1,replace
}
end

quietly loopm 2000
drop if temp==1
drop temp
capture erase bootresult.dta
save bootresult, replace
capture erase templ.dta
capture erase bootm.dta

4. Bootresult.do

****THIS PROGRAM GIVES THE CI'S FOR THE MULTIVARIABLE REGRESSIONS
**RUN THIS PROGRAM AFTER GETTING bootresult.dta

clear
set memory 10000
capture log close
log using bootresult.log, replace

use bootresult

gen olsdif=ols1-ols0
gen lolsdif=lols1-lols0
gen lhodif=lolsho1-lolsho0
gen gamdif=gam1-gam0
gen poisdif=pois1-pois0

capture program drop get95ci
program define get95ci
list `1' if (_n==1+round((_N*0.025),0))|(_n][_n-1==round((_N*0.025),0))
end

set seed 123456789
set obs 1
gen temp = 1
save bootm, replace
capture erase bootm.dta
quietly sum 'l'
display "mean " r(mean)
display "st err " r(sd)
display "t-stat " abs(r(mean)/r(sd))

end
get95ci olsdif
get95ci lolsdif
get95ci lhoodif
get95ci gamdif
get95ci poisdif
log close

5. Multivariable_tests.do

**
**********THIS PROGRAM CONDUCTS THE STATISTICAL TESTS FOLLOWING MULTIVARIABLE ANALYSES
**
clear
set memory 10000
capture log close
log using multivariable_test.log, replace
use mdmcea, clear

******control variables***************
global ivar "age ejfract sex etiology race"
**
global lst1 "xbt1 xbt2 xbt3 xbt4 xbt5 xbt6 xbt7 xbt8 xbt9 xbt10"

**create log of costs
gen lcost=log(cost)
gen tmptreat=treat

******OLS
regrress cost treat $ivar

predict xb, xb
gen mu=xb
gen res= cost-mu
summ res

/* PEARSON CORR TEST */
pwcorr mu res, sig

/* PREGIBON LINK TEST */
qui gen xbsq=xb^2
reg cost xb xbsq, robust
test xbsq

/* MODIFIED HOSMER LEMESHOW TEST */
qui xtile xbtile=xb, nq(10)
qui tab xbtile, gen(xbt)
reg res $lst1, nocons robust
test $lst1

drop xb mu res xbtile xbt1-xbt10 xbsq

***log costs
regrress lcost treat $ivar
predict xb, xb

***smearing factor
capture drop res
predict res, r
replace res=exp(res)
sum res
scalar sm=r(mean)
sum res if treat==0
scalar sm0=r(mean)
sum res if treat==1
scalar sm1=r(mean)
drop res

display sm
display sm0
display sm1
replace treat=0
predict lc0
replace treat=1
predict lc1
replace treat=tmptreat
gen lols_0=exp(lc0)*sm0
gen lols_1=exp(lc1)*sm1
replace lols_t=lols_0 if treat==0
 replace lols_t=lols_1 if treat==1
gen lols_res=cost-lols_t
gen res=lols_res
gen mu=lols_t
/* PEARSON CORR TEST */
pwcorr mu res, sig
/* PREGIBON LINK TEST */
gen xbsq=xb^2
reg lcost xb xbsq, robust
test xbsq
/* MODIFIED HOSMER LEMESHOW TEST */
xtile xbtil=xb, nq(10)
qui tab xbtil, gen(xbt)
reg res $lst1, nocons robust
test $lst1
drop xb mu res xbtil xbtil1-xbtil10 xbsq r2
****glm model (gamma/log link)
glm cost treat $ivar, family(gamma) link(log)
predict xb, xb
replace treat=0
predict gam_0
replace treat=1
predict gam_1
gen gam_dif=gam_1-gam_0
replace treat=tmptreat
replace gam_t=gam_0 if treat==0
replace gam_t=gam_1 if treat==1
gen gam_res=cost-gam_t
gen mu=gam_t
gen res=cost-gam_t
/* PEARSON CORR TEST */
pwcorr mu res, sig
/* PREGIBON LINK TEST */
gen xbsq=xb^2
glm cost xb xbsq, family(gamma) link(log) robust nolog
test xbsq
/* MODIFIED HOSMER LEMESHOW TEST */
xtile xbtil=xb, nq(10)
tab xbtil, gen(xbt)
reg res $lst1, nocons robust
test $lst1
/* Modified Park Test */
gen r2 = ((cost-mu)^2)
gen 1nmu = ln(mu)
glm r2 lnmu , link(log) family(gamma) robust nolog
test lnmu==0
test lnmu==1
test lnmu==2
test lnmu==3
drop xb mu res xbtile xbt1-xbt10 xbsq r2 lnmu

****glm model (poisson/log link)****

glm cost treat $ivar, family(poisson) link(log)
predict xb, xb
replace treat=0
predict pois_0
replace treat=1
predict pois_1
gen pois_dif=pois_1-pois_0
replace treat=tmp_treat
gen pois_t=pois_0 if treat==0
replace pois_t=pois_1 if treat==1

gen pois_res=cost-pois_t
gen mu=pois_t
gen res=cost-pois_t

/* PEARSON CORR TEST */
pwcorr mu res, sig

/* PREGIBON LINK TEST */
gen xbsq=xb^2
glm cost xb xbsq, family(gamma) link(log) robust nolog
test xbsq

/* MODIFIED HOSMER LEMESHOW TEST */
xtile xbtile=xb, nq(10)
tab xbtile, gen(xbt)
reg res $ist1, nocons robust
test $ist1

/* Modified Park Test */
gen r2 = ((cost-mu)^2)
gen lnmu = ln(mu)
glm r2 lnmu , link(log) family(gamma) robust nolog
test lnmu==0
test lnmu==1
test lnmu==2
test lnmu==3
drop xb mu res xbtile xbt1-xbt10 xbsq r2 lnmu

glm cost treat $ivar, family(gamma) link(log) predict xb, xb
replace treat=0
predict pois_0
replace treat=1
predict pois_1
gen pois_dif=pois_1-pois_0
replace treat=tmp_treat
gen pois_t=pois_0 if treat==0
replace pois_t=pois_1 if treat==1

gen pois_res=cost-pois_t
gen mu=pois_t
gen res=cost-pois_t

/* PEARSON CORR TEST */
pwcorr mu res, sig

/* PREGIBON LINK TEST */
gen xbsq=xb^2
glm cost xb xbsq, family(gamma) link(log) robust nolog
test xbsq

/* Modified Park Test */
gen r2 = ((cost-mu)^2)
gen lnmu = ln(mu)
glm r2 lnmu , link(log) family(gamma) robust nolog
test lnmu==0
test lnmu==1
test lnmu==2

6. Mse_ape_copastest.do
**
***THIS PROGRAM CONDUCTS THE SPLIT SAMPLE EXPERIMENT TO
**EXAMINE WITHIN-SAMPLE & OUT-OF-SAMPLE FIT
**
clear all
capture log close
set memory 500000
set more 1
global seed=5735766

clear all
set obs 1
global simul=
save mdmcea_splithalf, replace
log using mdmcea_splithalf.log, replace
qui local k=1
qui while `k' <=1000 {
tempfile tmp1 tmp2
use mdmcea, clear

gen tmptreat=treat
gen lcost=ln(cost)
global seed = $seed +10000
set seed $seed
sort patid
save `tmp1', replace

keep patid
keep if patid != patid[_n-1]
sample 50

gen split=1
sort patid
save `tmp2', replace
merge patid using `tmp1'
drop _merge
replace split=0 if split==. /* Split data into two equal parts */

******control variables***********
global ivar "age ejfract sex etiology race"

** For demonstration purposes Copas test for only OLS
** regression shown in this sample program - Can similarly ** include other multivariable models

***** OLS
regress cost treat $ivar if split==1
predict ols1_t
replace treat=0
predict ols1_0
replace treat=1
predict ols1_1
replace treat=tmptreat

/* In-sample Prediction */
gen own_ols = ols1_t if split==1
replace own_ols=. if split==0

/* Out-sample Prediction */
gen cross_ols = ols1_t if split==0
replace cross_ols=. if split==1

/* Efficiency Measures */
gen own_ols_mse = (cost-own_ols)^2
gen own_ols_ape = abs(cost-own_ols)
gen cross_ols_mse = (cost-cross_ols)^2
gen cross_ols_ape = abs(cost-cross_ols)

summ own_ols_mse
gen own_olsmse = r(mean)
summ own_ols_ape
gen own_olsape = r(mean)
summ cross_ols_mse
gen cross_olsmse = r(mean)
summ cross_ols_ape
gen cross_olsape = r(mean)

/*/ COPAS TEST */

**OLS
reg own_res own_ols, robust
gen own_b0_ols=_b[_cons]
gen own_bl_ols=_b[own_ols]
gen own_ols_copusmse=e(rmse)^2
test _b[_cons]=0, notest
test _b[own_ols]=0, accumulate
gen own_fstat_ols=r(F)
gen own_pval_ols=(r(p)<=0.05)

reg cross_res cross_ols, robust
gen cross_b0_ols=_b[_cons]
gen cross_bl_ols=_b[cross_ols]
gen cross_ols_copusmse=e(rmse)^2
test _b[_cons]=0, notest
test _b[cross_ols]=0, accumulate
gen cross_fstat_ols=r(F)
gen cross_pval_ols=(r(p)<=0.05)

drop own_res cross_res

gen simul=`k'
keep if _n==1
keep simul own_b0_ols own_bl_ols own_fstat_ols own_pval_ols own_ols_copusmse/* */
cross_b0_ols cross_bl_ols cross_ols_copusmse
append using mdmcea_splithalf
save mdmcea_splithalf, replace

noi di "Simul: " `k'
local k=`k' +1
}
ci own_b0_ols own_bl_ols own_fstat_ols own_pval_ols /*
*/ own_ols_copusmse ci cross_b0_ols cross_b1_ols
cross_fstat_ols */
*/ cross_pval_ols cross_ols_copusmse

log close