News Release
 

November 13, 2012

CONTACT:

Karen Kreeger

215-349-5658
karen.kreeger@uphs.upenn.edu

Perelman School of Medicine


This release is available online at
http://www.uphs.upenn.edu/news/News_Releases/2012/11/simon/

Targeting Downstream Proteins in Cancer-Causing Pathway Shows Promise in Cell, Animal Model, Penn Study Finds

PHILADELPHIA — The cancer-causing form of the gene Myc alters the metabolism of mitochondria, the cell’s powerhouse, making it dependent on the amino acid glutamine for survival. In fact, 40 percent of all “hard-to-treat” cancers have a mutation in the Myc gene.

Accordingly, depriving cells of glutamine selectively induces programmed cell death in cells overexpressing mutant Myc.

Using Myc-active neuroblastoma cancer cells, a team led by Howard Hughes Medical Institute (HHMI) investigator M. Celeste Simon, Ph.D., scientific director for the Abramson Family Cancer Research Institute (AFCRI), identified the proteins PUMA, NOXA, and TRB3 as executors of the glutamine-starved cells. These three proteins represent a downstream target in the Myc pathway at which to aim drugs. Roughly 25 percent of all neuroblastoma cases are associated with Myc-active cells.

The findings appear in this week’s issue of Cancer Cell. Simon is also a professor of Cell and Developmental Biology at the Perelman School of Medicine, University of Pennsylvania. The Penn team collaborated with colleagues from The Children’s Hospital of Philadelphia (CHOP) John Maris and Michael Hogarty.

"These findings come from studies of fundamental cellular pathways and would not have been discovered without ongoing support for basic research,” notes Simon. “Translational research is very important, but equal emphasis on basic research of processes such as cellular metabolism is critical for the ultimate cure of cancer.”

Glutamine depletion in Myc-mutant cells induces cell death through a complicated series of molecular switches involving the three protein executors and the DNA-binding protein ATF4. Knowing this, the team showed that either agonists of ATF4 or inhibitors of glutamine metabolism potently caused cell death in assays using neuroblastoma cells and inhibited tumor growth in transgenic mice. Drugs in these two classes have been approved by the Food and Drug Administration and are being tested in clinical trials for other disorders.

This study suggests that a combination of the two types of drugs might work for Myc-related neuroblastoma cancer patients.

Co-authors include Guoliang Qing, Bo Li, Nicolas Skuli, Zandra E. Walton, and David R. Wise, all from Penn, and Annette Vu, Xueyuan Liu, and Patrick A. Mayes, all from CHOP.  

This research was supported by the Howard Hughes Medical Institute; National Cancer Institute grants CA104838, CA097323, CA97323; an NIH F32 Training Grant 1F32CA137988 and an National Natural Science Foundation grant 81171928 from China.

###

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4.3 billion enterprise.

The Perelman School of Medicine has been ranked among the top five medical schools in the United States for the past 17 years, according to U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $392 million awarded in the 2013 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; Chester County Hospital; Penn Wissahickon Hospice; and Pennsylvania Hospital -- the nation's first hospital, founded in 1751. Additional affiliated inpatient care facilities and services throughout the Philadelphia region include Chestnut Hill Hospital and Good Shepherd Penn Partners, a partnership between Good Shepherd Rehabilitation Network and Penn Medicine.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2013, Penn Medicine provided $814 million to benefit our community.