News Release
  February 19, 2014

CONTACT:

Kim Menard

215-662-6183
kim.menard@uphs.upenn.edu

Perelman School of Medicine


This announcement is available online at
http://www.uphs.upenn.edu/news/News_Releases/2014/02/classifier/

Penn Medicine and Wistar Scientists Create Precise Tumor Classifier for Glioblastoma

PHILADELPHIA — A newly developed, more specific approach to classifying tumors by molecular type can help cancer researchers to determine tumor characteristics and guide treatment strategies. A team of researchers from the Perelman School of Medicine at the University of Pennsylvania and the Wistar Institute have created the first isoform-level assay for stratifying tumors at a molecular level, in patients with glioblastoma, the most common and most aggressive type of malignant primary brain tumor. This new classifier is more efficient and replicable in a laboratory setting than existing diagnostic tools, and can provide more accurate predictions for survival and how glioblastoma patients may respond to different treatments.

"Current tests can help classify tumor types to a lesser degree. This new classifying system improves both the diagnostic accuracy and the efficiency of the testing process," said Donald O'Rourke, MD, associate professor of Neurosurgery with Penn's Abramson Cancer Center and director of the Penn Brain Tumor Tissue Bank. "The more detailed information we have about the tumor, at a molecular level, the better we can target new immunotherapies and other treatments for our patients with glioblastoma."

Penn Medicine's Center for Personalized Diagnostics (CPD) currently analyzes all brain tumors to determine the best treatment approach for a given tumor type. This new approach would be complementary to the work of the CPD on brain tumor specimens and enhance the overall effort of molecular sub typing of GBM tumors.

This new isoform-based classifier, which looks at variations within cellular RNA, improves prediction accuracy and requires half the variables for the analysis than the genetic-based analysis. The isoform classifier glioblastoma tumor noted the correct subtype with 92 percent accuracy, according to the study, published in Nucleic Acids Research.

The study was completed in collaboration with Ramana Davuluri, PhD, formerly at The Wistar Institute and now at Northwestern University and colleagues. For more details on the study, please see the Wistar Institute press release.

###

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4.3 billion enterprise.

The Perelman School of Medicine has been ranked among the top five medical schools in the United States for the past 17 years, according to U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $392 million awarded in the 2013 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; Chester County Hospital; Penn Wissahickon Hospice; and Pennsylvania Hospital -- the nation's first hospital, founded in 1751. Additional affiliated inpatient care facilities and services throughout the Philadelphia region include Chestnut Hill Hospital and Good Shepherd Penn Partners, a partnership between Good Shepherd Rehabilitation Network and Penn Medicine.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2013, Penn Medicine provided $814 million to benefit our community.