Newsroom | News Archive | Publications | Contact Us for Experts  
 
Karen Kreeger
(215) 349-5658
Related Links
Perelman School of Medicine
University of Pennsylvania Health System
 
 
> Epigenetics Shapes Fate of Brain vs. Brawn Castes in Carpenter Ants
> Molecular Master Switch for Pancreatic Cancer Identified, Potential Predictor of Treatment Outcome
> Eat to Dream: Penn Study Shows Dietary Nutrients Associated with Certain Sleep Patterns
  All News Releases
 
    Media Resources
 
spacerNEWS RELEASE spacer Print Version
DECEMBER 23, 2005
  Mechanism for Epstein-Barr Virus Protein’s Role In Blood Cancers Discovered
  Implications for New Therapeutic Targets for B Cell Lymphomas and Other EBV-Associated Illnesses
   

(Philadelphia, PA) - Earlier this year, researchers at the University of Pennsylvania School of Medicine identified a link between a critical cancer pathway and an Epstein-Barr Virus (EBV) protein known to be expressed in a number of EBV-associated cancers. Their findings demonstrated a new mechanism by which EBV can transform human B cells from the immune system into cancerous cells, which can lead to B-cell lymphomas. Now, they have found that the viral protein--called EBNA3C (for EBV nuclear antigen)--mediates the degradation of the retinoblastoma protein, an important molecular brake for cell proliferation.

Erle S. Robertson, PhD, an Associate Professor of Microbiology who leads the Tumor Virology Program at Penn's Abramson Cancer Center, and MD/PhD student Jason Knight, published their results last week in the Proceedings of the National Academy of Sciences.

The retinoblastoma protein (Rb) is a major regulator of several genes in charge of cell proliferation and cell-cycle regulation. In the nucleus, Rb normally binds to E2F, turning off genes involved with cell proliferation. Using human cell cultures infected with the Epstein-Barr virus, the investigators found that EBNA3C recruits a group of molecules called the SCF complex, which attaches ubiquitin to Rb. This inadvertently tags Rb for degradation by the proteosome machinery, the cell’s recycling plant. With Rb out of the way, the cell now reproduces uncontrollably.
"It's as simple as that, but it's a major mystery solved that many researchers have been working on for at least 15 years," says Robertson.

EBV, a member of the herpesvirus family and one of the most common human viruses, plays a role in cancers such as lymphoproliferative diseases in transplant or AIDS patients, Burkitt's lymphoma, Hodgkin's lymphoma, and nasopharyngeal carcinoma, and also causes the well-known disease infectious mononucleosis. As many as 95 percent of adults 20 years and older have been infected with EBV, but show no symptoms.

Now, the researchers are in the process of blocking the molecular signals caused by EBNA3C's presence in B cells. This points the way to a possible drug for EBV-related cancers. "Stopping this step in the life cycle of EBV could be a major potential target for the development of therapeutics for treating EBV-related B cell lymphomas," says Robertson. "This is especially important because a large percentage of patients are non-responsive to the current frontline drug for treating B cell lymphoma, a CD20 monoclonal antibody." The researchers surmise that the first use of future therapies from these studies could be in lymphoproliferative disease in transplant and immunocompromised patients.

This research was funded by the National Institutes of Health and the Leukemia and Lymophoma Society of America. Nikhil Sharma, a student from Cherokee High School, New Jersey and volunteer at Penn at the time of the study, and now an undergraduate at Johns Hopkins University, was also a co-investigator in this study.

###

PENN Medicine is a $2.7 billion enterprise dedicated to the related missions of medical education, biomedical research, and high-quality patient care. PENN Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System.

Penn’s School of Medicine is ranked #2 in the nation for receipt of NIH research funds; and ranked #4 in the nation in U.S. News & World Report’s most recent ranking of top research-oriented medical schools. Supporting 1,400 fulltime faculty and 700 students, the School of Medicine is recognized worldwide for its superior education and training of the next generation of physician-scientists and leaders of academic medicine.

The University of Pennsylvania Health System comprises: its flagship hospital, the Hospital of the University of Pennsylvania, consistently rated one of the nation’s “Honor Roll” hospitals by U.S. News & World Report; Pennsylvania Hospital, the nation's first hospital; Penn Presbyterian Medical Center; a faculty practice plan; a primary-care provider network; two multispecialty satellite facilities; and home health care and hospice.


 

 



About Penn Medicine   Contact Us   Site Map   Privacy Statement   Legal Disclaimer   Terms of Use

Penn Medicine, Philadelphia, PA 800-789-PENN © 2013, The Trustees of the University of Pennsylvania