Newsroom News Archive Publications Contact Us for Experts
Media Contacts
Karen Kreeger
(215) 349-5658

Related Links
Perelman School of Medicine
University of Pennsylvania Health System

Recommend Story
> Epigenetics Shapes Fate of Brain vs. Brawn Castes in Carpenter Ants
> Molecular Master Switch for Pancreatic Cancer Identified, Potential Predictor of Treatment Outcome
> Eat to Dream: Penn Study Shows Dietary Nutrients Associated with Certain Sleep Patterns
  All News Releases
    Media Resources
spacerNEWS RELEASE spacer Print Version
SEPTEMBER 22, 2008
  Penn Researchers Receive Prestigious NIH Director’s Pioneer and New Innovator Awards

PHILADELPHIA – James Eberwine, PhD, the Elmer Holmes Bobst Professor of Pharmacology and co-director of the Penn Genome Frontiers Institute, has been awarded the National Institutes of Health Pioneer Award, which provides $2.5 million over the next five years. Aaron Gitler, PhD, Assistant Professor of Cell and Developmental Biology, has been awarded the NIH New Innovator Award, which provides $1.5 million over the same timeframe. Eberwine investigates how single neurons work in the context of surrounding cells and how this relates to the emerging field of RNA-based therapeutics and Gitler studies yeast cells to define mechanisms of neurodegenerative diseases and screen for new treatment targets.

James Eberwine, PhD

James Eberwine, Ph.D.

“These programs are central elements of NIH efforts to encourage and fund especially novel investigator-initiated research, even if it might carry a greater-than-usual degree of risk of not succeeding,” comments NIH Director Elias A. Zerhouni, M.D. on the aim of the Pioneer and Innovator awards. “The awards also reflect our goal of supporting more investigators in the early stages of their careers.”

Aaron Gitler, PhD

Aaron Gitler, Ph.D.

“The Pioneer award will enable us to try many different -- some risky-- approaches to understanding how a cell’s individual biochemical characteristics, or phenotype, develops and is regulated,” says Eberwine. “One can think of this pursuit as a complex maze with many false passages and the funding will enable us to move much more rapidly through this scientific maze.”

“The Innovator award will allow me to take risks and expand my research program in new directions without worrying about funding for a while,” says Gitler. “It will be great to be able to focus all of my attention on research and continue to do the work I am most excited about.”

Eberwine proposes that by transferring the catalogue of RNA molecules from one cell to another in a way that makes the recipient cells' survival dependent on the donor RNA, the recipient cell’s phenotype will mimic the donor cell phenotype. Having the ability to transfer phenotypes between cells would provide important new insights into mechanisms controlling cell differentiation and function. Preliminary data show that donor cell RNA populations carry "memory functions” in which donor RNA can induce long-term changes in the genome of host cells to effectively match the inner workings of the donor cell. The ability to selectively and rationally create cellular phenotypes may yield novel individualized therapeutics.

Gitler studies the mechanisms that cause proteins to misfold and aggregate by identifying genes and cellular pathways that are affected by misfolded human disease proteins. By harnessing baker’s yeast as a model system to study the mechanisms underpinning protein-misfolding diseases such as Alzheimer’s and Parkinson’s, the Gitler lab aims to perform high-throughput, genome-wide screens to elucidate the basic cellular mechanisms of toxicity. These yeast models will provide the Gitler lab with a unique opportunity to observe and understand protein folding and misfolding in real time as it occurs in a living cell. The innovative aspect of Gitler’s approach is not just that they are working in yeast, but that they are using this system as a tool to discover new drug targets.

For both programs, NIH selects recipients through special application and evaluation processes. Distinguished outside experts identify the most highly competitive applicants. The Advisory Committee to the Director, NIH, performs the second level of review and Zerhouni makes final decisions based on the outside evaluations and programmatic considerations.


PENN Medicine is a $3.5 billion enterprise dedicated to the related missions of medical education, biomedical research, and excellence in patient care. PENN Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System.

Penn's School of Medicine is currently ranked #4 in the nation in U.S.News & World Report's survey of top research-oriented medical schools; and, according to most recent data from the National Institutes of Health, received over $379 million in NIH research funds in the 2006 fiscal year. Supporting 1,400 fulltime faculty and 700 students, the School of Medicine is recognized worldwide for its superior education and training of the next generation of physician-scientists and leaders of academic medicine.

The University of Pennsylvania Health System includes three hospitals — its flagship hospital, the Hospital of the University of Pennsylvania, rated one of the nation’s top 10 “Honor Roll” hospitals by U.S.News & World Report; Pennsylvania Hospital, the nation's first hospital; and Penn Presbyterian Medical Center — a faculty practice plan; a primary-care provider network; two multispecialty satellite facilities; and home care and hospice.



About Penn Medicine   Contact Us   Site Map   Privacy Statement   Legal Disclaimer   Terms of Use

Penn Medicine, Philadelphia, PA 800-789-PENN © 2016, The Trustees of the University of Pennsylvania