Statistical Methods in Economic Evaluation

Henry Glick
University of Pennsylvania

Developing Economic Evaluation Methodologies IV

September 5, 2003
BACKGROUND

In response to increasing health care costs, regulators, providers, payers, and patients have begun to question the value for the cost of individual medical therapies.

One of the growing trends in this evaluation has been the incorporation of economic evaluations within randomized controlled trials of medical therapies.

Most frequently these evaluations are incorporated into the drug development process:

- Prior to approval in phases II and III: during which a drug's safety and efficacy are evaluated prior to regulatory approval.
- After approval in phase IV.

To a lesser extent, they are conducted within trials of other medical therapies (e.g., surgical procedures, behavioral interventions, etc.)

A number of national regulatory bodies have indicated they are comfortable with economic evidence derived from trials, although they may ask for it to be "tailored" to their country.
DEMONSTRATING THAT A TECHNOLOGY IS "GOOD VALUE FOR THE COST" (I)

10-15 years ago, most likely would have supported this message by use of a decision analytic model such as a decision tree or a Markov model

- Few if any of the economic results would have been directly observed
 - e.g., the clinical evidence about the therapy would be that it reduced blood pressure
 - These data often would be combined with epidemiologic data relating blood pressure to death and disability to project the likely impact of therapy on outcomes, and thus a therapy's economic impact

- Reported results would have included point estimates of incremental costs, outcomes, and comparison of costs and effects from a "principal" or "base-case" analysis as well as the results of sensitivity analysis
"GOOD VALUE FOR THE COST" (II)

In the mid-90's, for a cutting edge evaluation, the message would have been supported by use of data from a randomized trial that included economic outcomes as primary or secondary endpoints of the trial.

- Short-term economic impacts of the therapy would be directly observed; longer term impacts potentially would be projected by use of decision analysis.

- Reported results would have included point estimates and confidence intervals for estimates of incremental costs and outcomes as well as point estimates and results of sensitivity analysis for the comparison of costs and effects.
"GOOD VALUE FOR THE COST" (III)

By the end of the 90's, for a cutting edge evaluation, the message would have been supported by use of an evaluation from a randomized trial that included economic outcomes as primary or secondary endpoints of the trial

- Short-term economic impacts of the therapy would be directly observed; longer term impacts potentially would be projected by use of decision analysis

- Reported results would include point estimates and confidence intervals for estimates of incremental costs, outcomes, and the comparison of costs and effects

- The impact of sensitivity analysis on the comparison of costs and effects would be judged by its impact on both the point estimates and the confidence intervals of the ratios
Example of Typical Late '90s Results

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Point</th>
<th>Estimate</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incremental Costs</td>
<td>-713</td>
<td>-2123 to 783</td>
<td></td>
</tr>
<tr>
<td>Incremental QALYS</td>
<td>0.13</td>
<td>0.07 to 0.18</td>
<td></td>
</tr>
</tbody>
</table>

Cost-Effectiveness Ratios

- **Principal Analysis**
 - Dominates
 - Dom to 6650

- **Survival benefit**
 - -33% Dominates Dom to 9050
 - +33% Dominates Dom to 5800

- **Hospitalization costs**
 - -50% Dominates Dom to 5300
 - +50% Dominates Dom to 8400

- **Drug costs**
 - -50% Dominates Dom to 4850
 - +50% Dominates Dom to 8750

- **Discount rate**
 - 0% Dominates Dom to 6350
 - 7% Dominates Dom to 7000
CURRENT ISSUES

In the last decade we have addressed, and principally solved, the issues related to stochastic uncertainty in the comparison of costs and effects.

Attention has now turned to a number of other issues that need attention, if we want our analyses to report valid and reliable results:

- Censored/missing data
- Cost estimation
- Net monetary benefit estimation
- Representativeness of the data
 * Transferability/subgroup analysis
 * Design issues
 - Sample selection
 - Protocol
- Integration of trial-based and observational data
The problem: Censored data pose threats to estimation of costs of medical therapies and differences in these costs

- Censoring mechanisms can be:
 - Completely at random: the censored data represent a random sample of all of the data observed in the experiment
 - At random: the censored data represent a random sample of a predictable subsample of the data observed in the experiment
 - Non-ignorable: the censored data are not a random sample of either all of the data or a predictable subsample of the data (i.e., additional data -- most likely from outside the experiment -- are needed to estimate the missing data)
CENSORED (MISSING) DATA (II)

Recent methodologic developments - A number of authors have proposed methods for addressing issues posed by missing data

- General strategy: Identify observations without censored data that are "similar" to observations with censored data, and use data from the former to represent (censored) data from the latter

- Two of the most cited approaches have been provided by Lin and colleagues

 Lin DY. Linear regression analysis of censored medical costs. Biostatistics. 2000;1:35-47. *Describes methods for data that are missing at random*

- An alternative approach for imputing data that are missing at random is described by:

The future

- It's not clear that we've come to closure on the methods for use when data are missing completely at random or at random

 * Alternative methods may still be proposed

- As with most other fields, we have made little or no headway in addressing issues related to data that are nonignorably missing

 * Strategy will probably continue to be to attempt to identify observations without censored data that are "similar" to observations with censored data; however, will probably need to look outside the experiment for the similar observations and their data

- For example, it may be that participants who experience "catastrophes" are the ones who become censored, and none of the participants who are uncensored experience such catastrophes. One might collect data about the costs and effects of such catastrophes outside of the experiment
Multivariable estimates of costs generally thought to be better than univariate estimates because:

- Practice pattern differences by provider, center, or country may have a large influence on costs and the randomization may not account for all imbalances between groups

- Variations in economic conditions often not controlled for in a randomized trial, therefore multivariable analysis takes on added importance

- Improves efficiency of estimation/inference (by explaining variation due to other causes)

- Helps explain what is observed (e.g., coefficients for other variables should make sense economically)
The problem: The distribution of costs -- that is, the fact that they cannot be negative and usually have long, heavy right tails -- may make what have been common approaches to cost estimation either biased or inefficient.

Recent methodologic developments: Use of OLS with or without log transformation for the analysis of costs has been giving way to use of GLM (the proverbial "fitting a gamma with a log link")

- Little if any evidence exists in the literature that demonstrates that the results of correctly applied methods differ dramatically from one another.
COST ESTIMATION (III)

Future: Develop better guidelines for helping analysts choose an appropriate method for the analysis of costs

- It is most likely the case that no single model will always be most appropriate for estimating cost differences associated with medical therapies

- Guidance for selection of the most appropriate model may be derived from theory, but it also may be derived by empirical estimation within the dataset (e.g., by use of split sample experiments)

- The most familiar criteria used for choice between models are based on observed vs. predicted values for individual observations within the sample (MSE, absolute error, etc.)

- It may not be the case that the method that minimizes error for individual predictions is the same method that provides the best out-of-sample estimate of the difference in means between two treatment groups (e.g., doing better with the tails does not necessarily mean doing better with difference in means)
NET MONETARY BENEFIT (RΔE-ΔC) ESTIMATION (I)

Originally proposed as a means of avoiding the poorly behaved statistical properties of CER

- With net monetary benefit (NMB), the study result is a difference in means, not a ratio of means, and its standard error is always defined (i.e., no odd statistical properties like the ratio)

The problem: The same issues that arise for the estimation of costs may arise for the estimation of NMB. However, in addition, there are issues related to where in the estimation process one makes the NMB transformation
NET MONETARY BENEFIT (RΔE-ΔC) ESTIMATION (II)

Recent methodologic developments:

- Three major strategies for the analysis of NMB
 *
 - Direct estimation of patient-level NMB (e.g., net monetary benefit regression)

- Potential advantages: Single estimation that maintains correlation between cost and outcome; can utilize advances in the estimation of costs when estimating NMB

- Potential disadvantages: Explanatory power of separate predictions of costs and outcomes may be greater than explanatory power of prediction of direct estimate of NMB; may be easier to address censoring of costs and effects separately than it is to address censoring of NMB
NET MONETARY BENEFIT (RΔE-ΔC) ESTIMATION (III)

Recent methodologic developments (cont)

* Independent estimation of costs and effects

 - (Current) potential advantages: Allows use of any estimation procedure for costs and effects (including GLM, etc.)

 - Potential disadvantages: Ignores correlation structure between costs and effects in the estimation; results of estimation don't provide measure of correlation between the difference in costs and effects (necessary for parametric estimation of CI)
NET MONETARY BENEFIT (RΔE-ΔC) ESTIMATION (IV)

Recent methodologic developments (cont)

* Use of seemingly-unrelated regression (sure command, Stata 8.0) to separately predict costs and effects

- Potential advantages: Uses correlation structure between costs and effects in the estimation of each of the two outcomes; provides a measure of the correlation between the difference in costs and effects

- (Current) potential disadvantages: May limit the functional forms one can use in the estimation of the outcomes

The future

- Currently a rapidly progressing area of research

- Anticipate we will develop methods that will combine most if not all of the strengths of the current methods
TRANSFERABILITY (I)

Differences in morbidity and mortality patterns, genetic susceptibilities, practice patterns, unit costs, etc., may lead decision makers to question whether the pooled economic results from multinational or multi-center trials represent the economic results that would be observed in their country or center.

- Similar issues arise when considering whether the pooled estimate represents the economic results that would be observed for any subgroup of interest in the trial.

Recent methodologic developments:

- Two approaches -- which rely principally on data from the trial to address these issues -- are currently making their way into the literature (other approaches include decision analytic models that attempt to incorporate trial-based and observational data).
Hypothesis testing: One of the two methods tests the homogeneity of the economic results observed in the trial

- If there is no evidence of heterogeneity (i.e., a nonsignificant p-value for the test of homogeneity), and if one believes the test was powerful enough to rule out economically meaningful differences in costs, then one can conclude that the pooled economic result from the trial applies to all of the countries that participated in the trial.

- If there is evidence of heterogeneity, then the method indicates one should not use the pooled estimate to represent the result for the individual countries, but this method is less clear about the result that should be used instead.

TRANSFERABILITY (III)

Estimation: The second method -- which has its roots in comments made by Simon Thompson at an OHE-sponsored conference in Oxford in 2001 -- uses multi-level modeling shrinkage estimators to provide more precise estimates of the country-specific results than are yielded by separate -- and naive -- analysis of each country's costs and effects.

- These methods have the potential added advantage of providing better estimates of the uncertainty surrounding the pooled result than naive estimates of the trial-wide result.

My prior: The strongest evidence for adopting a therapy will be derived from some version of the pooled result (and evidence that country-specific results aren't substantially different from the pooled result).

- Not clear that staring at a forest plot and noting that the country-specific estimate looks similar to the trial-wide estimate is substantially better information than is a formal test of homogeneity.
MORE GENERAL IMPLICATIONS OF SHRINKAGE ESTIMATORS

If we begin to use shrinkage estimators to address transferability, will have to return to more general methods for estimating uncertainty (e.g., confidence intervals or acceptability curves) and incorporate shrinkage estimators there as well.

Same issues arise for estimating uncertainty around the clinical endpoints.
CONCLUSIONS

Don't want to come across like the enlightenment philosophers who pictured the human condition as a never ending spiral towards perfection.

On the other hand, the methodologic underpinnings of economic analysis of medical therapies have been strengthened in the past 10 years, and the current active research agenda should improve them further.

In our field, as in almost every other, one of the greatest problems is dissemination of what we have learned.

While some of that problem will only be addressed when we incorporate the methodologic advances into readily available, easy to use software packages, I would hope that the attendees here will provide one of the mechanisms for such dissemination.